论文标题
在$ l_p $ - 代表kazhdan组的固定点属性上
On fixed point property for $L_p$-representations of Kazhdan groups
论文作者
论文摘要
让$ g $为有限的kazhdan套件的拓扑组,让$ω$成为标准的borel空间,而在$ω$上的有限度量为$μ$。 We prove that for any $p\in [1, \infty)$, any affine isometric action $G \curvearrowright L_p(Ω, μ)$ whose linear part arises from an ergodic measure-preserving action $G \curvearrowright (Ω, μ)$, has a fixed point.
Let $G$ be a topological group with finite Kazhdan set, let $Ω$ be a standard Borel space and $μ$ a finite measure on $Ω$. We prove that for any $p\in [1, \infty)$, any affine isometric action $G \curvearrowright L_p(Ω, μ)$ whose linear part arises from an ergodic measure-preserving action $G \curvearrowright (Ω, μ)$, has a fixed point.