论文标题

在3D超声波中搜索协作代理以获取多平面定位

Searching Collaborative Agents for Multi-plane Localization in 3D Ultrasound

论文作者

Huang, Yuhao, Yang, Xin, Li, Rui, Qian, Jikuan, Huang, Xiaoqiong, Shi, Wenlong, Dou, Haoran, Chen, Chaoyu, Zhang, Yuanji, Luo, Huanjia, Frangi, Alejandro, Xiong, Yi, Ni, Dong

论文摘要

3D超声(US)由于其丰富的诊断信息,便携性和低成本而被广泛使用。美国体积中的自动化标准平面(SP)本地化不仅提高了效率并降低了用户依赖性,还可以提高3D美国的解释。在这项研究中,我们提出了一种新型的多代理增强学习(MARL)框架,以同时在3D US中定位多个子宫SP。我们的贡献是两个方面。首先,我们为MARL配备了一次性神经结构搜索(NAS)模块,以获得每个平面的最佳药物。具体而言,使用可区分体系结构采样器(GDA)的基于梯度的搜索用于加速和稳定训练过程。其次,我们提出了一种新颖的协作策略来加强代理商的交流。我们的策略使用复发性神经网络(RNN)来有效地学习SP之间的空间关系。在大型数据集上进行了广泛的验证,我们的方法分别达到了7.05度/2.21mm,8.62度/2.36mm和5.93度/0.89mm的准确性,分别为中间,横向和冠状平面定位。提出的MAL框架可以显着提高平面定位精度并降低计算成本和模型大小。

3D ultrasound (US) is widely used due to its rich diagnostic information, portability and low cost. Automated standard plane (SP) localization in US volume not only improves efficiency and reduces user-dependence, but also boosts 3D US interpretation. In this study, we propose a novel Multi-Agent Reinforcement Learning (MARL) framework to localize multiple uterine SPs in 3D US simultaneously. Our contribution is two-fold. First, we equip the MARL with a one-shot neural architecture search (NAS) module to obtain the optimal agent for each plane. Specifically, Gradient-based search using Differentiable Architecture Sampler (GDAS) is employed to accelerate and stabilize the training process. Second, we propose a novel collaborative strategy to strengthen agents' communication. Our strategy uses recurrent neural network (RNN) to learn the spatial relationship among SPs effectively. Extensively validated on a large dataset, our approach achieves the accuracy of 7.05 degree/2.21mm, 8.62 degree/2.36mm and 5.93 degree/0.89mm for the mid-sagittal, transverse and coronal plane localization, respectively. The proposed MARL framework can significantly increase the plane localization accuracy and reduce the computational cost and model size.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源