论文标题

磁石墨烯的发电和热产生自旋电流

Electrical and Thermal Generation of Spin Currents by Magnetic Graphene

论文作者

Ghiasi, Talieh S., Kaverzin, Alexey A., Dismukes, Avalon H., de Wal, Dennis K., Roy, Xavier, van Wees, Bart J.

论文摘要

对紧凑,高速和节能电路的需求敦促较高的自旋设备效率,这可以为当前电子设备提供可行的替代方案。朝着该目标的途径表明,实施二维(2D)材料,这些材料可提供大型电荷电流的自旋极化以及自旋信息的长距离传递。在这里,我们首次在实验上证明了石墨烯电导率的较大自旋极化($ \ \%\%$),这是由于与2D层次的抗铁磁性的近距离诱导交换相互作用引起的。石墨烯中电荷和自旋电流的强耦合与自旋电流的高效率,与金属铁磁体的效率高,以及观察到自旋依赖性的Seebeck和异常霍尔效应的观察,都一致地证实了石墨烯的磁性。石墨烯中自旋传输对相邻层抗fiferromagnet最外层的磁化的高灵敏度,还提供了一种工具来读取单个磁性亚晶格。首次通过磁石墨烯观察到自旋电流的电流和热产生,它是超薄的磁性记忆和感觉设备的最终构建块,结合了栅极可调型自旋依赖性电导率,长距离自旋传输和自旋轨道将所有耦合在单个2D材料中耦合。

The demand for compact, high-speed and energy-saving circuitry urges higher efficiency of spintronic devices that can offer a viable alternative for the current electronics. The route towards this goal suggests implementing two-dimensional (2D) materials that provide large spin polarization of charge current together with the long-distance transfer of the spin information. Here, for the first time, we experimentally demonstrate a large spin polarization of the graphene conductivity ($\approx 14\%$) arising from a strong induced exchange interaction in proximity to a 2D layered antiferromagnetic. The strong coupling of charge and spin currents in graphene with high efficiency of spin current generation, comparable to that of metallic ferromagnets, together with the observation of spin-dependent Seebeck and anomalous Hall effects, all consistently confirm the magnetic nature of graphene. The high sensitivity of spin transport in graphene to the magnetization of the outermost layer of the adjacent interlayer antiferromagnet, also provides a tool to read out a single magnetic sub-lattice. The first time observations of the electrical and thermal generation of spin currents by magnetic graphene suggest it as the ultimate building block for ultra-thin magnetic memory and sensory devices, combining gate tunable spin-dependent conductivity, long-distance spin transport and spin-orbit coupling all in a single 2D material.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源