论文标题
关于机器学习算法的超参数优化:理论和实践
On Hyperparameter Optimization of Machine Learning Algorithms: Theory and Practice
论文作者
论文摘要
机器学习算法已广泛用于各种应用和领域。为了将机器学习模型纳入不同的问题,必须调整其超参数。为机器学习模型选择最佳的高参数配置会直接影响模型的性能。它通常需要深入了解机器学习算法和适当的超参数优化技术。尽管存在几种自动优化技术,但是将它们应用于不同类型的问题时具有不同的优势和弊端。在本文中,研究了优化普通机器学习模型的超参数。我们介绍了几种最先进的优化技术,并讨论如何将它们应用于机器学习算法。提供了许多用于超参数优化问题的可用库和框架,本文还讨论了超参数优化研究的一些开放挑战。此外,在基准数据集上进行了实验,以比较不同优化方法的性能,并提供了超参数优化的实例。该调查论文将通过有效识别适当的高参数配置来帮助工业用户,数据分析师和研究人员更好地开发机器学习模型。
Machine learning algorithms have been used widely in various applications and areas. To fit a machine learning model into different problems, its hyper-parameters must be tuned. Selecting the best hyper-parameter configuration for machine learning models has a direct impact on the model's performance. It often requires deep knowledge of machine learning algorithms and appropriate hyper-parameter optimization techniques. Although several automatic optimization techniques exist, they have different strengths and drawbacks when applied to different types of problems. In this paper, optimizing the hyper-parameters of common machine learning models is studied. We introduce several state-of-the-art optimization techniques and discuss how to apply them to machine learning algorithms. Many available libraries and frameworks developed for hyper-parameter optimization problems are provided, and some open challenges of hyper-parameter optimization research are also discussed in this paper. Moreover, experiments are conducted on benchmark datasets to compare the performance of different optimization methods and provide practical examples of hyper-parameter optimization. This survey paper will help industrial users, data analysts, and researchers to better develop machine learning models by identifying the proper hyper-parameter configurations effectively.