论文标题
从数据增强的角度来看,可靠的视网膜船分割
Robust Retinal Vessel Segmentation from a Data Augmentation Perspective
论文作者
论文摘要
视网膜血管分割是筛查,诊断和治疗各种心血管和眼科疾病的基本步骤。鲁棒性是实用利用的最关键要求之一,因为可以使用不同的眼镜摄像机捕获测试图像,也可以受到各种病理变化的影响。我们从数据增强角度研究了这个问题,没有其他培训数据或推理时间的优点。在本文中,我们提出了两个新的数据增强模块,即,通过渠道随机γ校正和渠道随机血管增强。鉴于训练颜色的底面图像,前者在整个图像的每个颜色通道上都采用随机伽马校正,而后者则有意增强或仅使用形态转化来增强或减少细粒血管区域。通过依次应用这两个模块来生成的其他训练样本,模型可以学习对全球和局部干扰的更不变和区分的特征。对现实世界和合成数据集的实验结果表明,我们的方法可以改善经典卷积神经网络体系结构的性能和鲁棒性。源代码可在\ url {https://github.com/paddlepaddle/research/tree/master/master/cv/robust_vessel_segmentation}中获得。
Retinal vessel segmentation is a fundamental step in screening, diagnosis, and treatment of various cardiovascular and ophthalmic diseases. Robustness is one of the most critical requirements for practical utilization, since the test images may be captured using different fundus cameras, or be affected by various pathological changes. We investigate this problem from a data augmentation perspective, with the merits of no additional training data or inference time. In this paper, we propose two new data augmentation modules, namely, channel-wise random Gamma correction and channel-wise random vessel augmentation. Given a training color fundus image, the former applies random gamma correction on each color channel of the entire image, while the latter intentionally enhances or decreases only the fine-grained blood vessel regions using morphological transformations. With the additional training samples generated by applying these two modules sequentially, a model could learn more invariant and discriminating features against both global and local disturbances. Experimental results on both real-world and synthetic datasets demonstrate that our method can improve the performance and robustness of a classic convolutional neural network architecture. The source code is available at \url{https://github.com/PaddlePaddle/Research/tree/master/CV/robust_vessel_segmentation}.