论文标题
远程各向异性$ xy $ - 横向场中的量子关键和激发
Quantum criticality and excitations of a long-range anisotropic $XY$-chain in a transverse field
论文作者
论文摘要
通过研究铁和抗铁磁病的横向场中各向异性XY模型的高场极化相,研究了具有远距离相互作用的一维量子磁体的临界分解。虽然对于各向同性远程XY模型的限制情况,我们可以在分析上提取基本一个准粒子分散,并以数值方式定量地计算出两个准粒子激发能量,以实数数值,用于长期ISING的远距离iSing极限以及中间方案中的持续分类范围,我们在白色的持续分类范围内进行了构图,该图形是在白色的范围内进行构图,该图形是在白色的范围内构建的,该图形是在白色的范围内进行的,该图形均等范围。热力学极限中的高阶系列扩展。这使我们能够通过分析隔离隔离(包括相关的关键指数和乘法对数校正)来确定高场极化相的量子关键分解。此外,对于铁电磁各向同性XY模型,我们通过玻色粒量子场理论分析了关键指数$ z $和$ν$。
The critical breakdown of a one-dimensional quantum magnet with long-range interactions is studied by investigating the high-field polarized phase of the anisotropic XY model in a transverse field for the ferro- and antiferromagnetic case. While for the limiting case of the isotropic long-range XY model we can extract the elementary one quasi-particle dispersion analytically and calculate two quasi-particle excitation energies quantitatively in a numerical fashion, for the long-range Ising limit as well as in the intermediate regime we use perturbative continuous unitary transformations on white graphs in combination with classical Monte Carlo simulations for the graph embedding to extract high-order series expansions in the thermodynamic limit. This enables us to determine the quantum-critical breakdown of the high-field polarized phase by analyzing the gap-closing including associated critical exponents and multiplicative logarithmic corrections. In addition, for the ferromagnetic isotropic XY model we determined the critical exponents $z$ and $ν$ analytically by a bosonic quantum-field theory.