论文标题

基于情感分析的多人多准则决策方法,使用自然语言处理和深度学习,以供更智能的决策援助。使用TripAdvisor评论的餐厅选择案例研究

Sentiment Analysis based Multi-person Multi-criteria Decision Making Methodology using Natural Language Processing and Deep Learning for Smarter Decision Aid. Case study of restaurant choice using TripAdvisor reviews

论文作者

Zuheros, Cristina, Martínez-Cámara, Eugenio, Herrera-Viedma, Enrique, Herrera, Francisco

论文摘要

决策模型通过使用预定义的数值或语言术语的专家评估来限制。我们声称,使用情感分析将使决策模型可以考虑自然语言的专家评估。因此,我们提出了基于情感分析的多人多人多准则决策(SA-MPMCDM)方法,用于更智能的决策援助,该方法可以从其自然语言评论中构建专家评估,甚至从其数字评级中进行。 SA-MPMCDM方法包括用于基于方面的情感分析的端到端多任务深度学习模型,命名为Doc-absadeepl模型,能够识别专家审查中提到的方面类别,并提炼其意见和标准。通过专家的注意,通过称为标准加权的程序进行了汇总。我们在使用TripAdvisor评论的餐厅选择案例研究中评估了该方法,因此我们可以构建,手动注释并发布餐厅评论的Tripr-2020数据集。我们使用自然语言和数值评估分析了不同情况下的SA-MPMCDM方法。分析表明,两种信息来源的组合都会导致更高质量的偏好向量。

Decision making models are constrained by taking the expert evaluations with pre-defined numerical or linguistic terms. We claim that the use of sentiment analysis will allow decision making models to consider expert evaluations in natural language. Accordingly, we propose the Sentiment Analysis based Multi-person Multi-criteria Decision Making (SA-MpMcDM) methodology for smarter decision aid, which builds the expert evaluations from their natural language reviews, and even from their numerical ratings if they are available. The SA-MpMcDM methodology incorporates an end-to-end multi-task deep learning model for aspect based sentiment analysis, named DOC-ABSADeepL model, able to identify the aspect categories mentioned in an expert review, and to distill their opinions and criteria. The individual evaluations are aggregated via the procedure named criteria weighting through the attention of the experts. We evaluate the methodology in a case study of restaurant choice using TripAdvisor reviews, hence we build, manually annotate, and release the TripR-2020 dataset of restaurant reviews. We analyze the SA-MpMcDM methodology in different scenarios using and not using natural language and numerical evaluations. The analysis shows that the combination of both sources of information results in a higher quality preference vector.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源