论文标题

多变量反应中的固定峰 - 扩散系统:亚临界图灵不稳定性引起的叶子

Stationary peaks in a multivariable reaction--diffusion system: Foliated snaking due to subcritical Turing instability

论文作者

Knobloch, Edgar, Yochelis, Arik

论文摘要

在肺血管和肺部发育中使用的侧分支的激活剂抑制剂 - 基底模型被考虑在于激活剂触发局部侧支链接的空间浓度的假设。该模型由四个耦合反应扩散方程及其稳定的局部溶液组成,因此在一个维度(1D)中遵守八维空间动力学系统。该模型中的固定局部结构被发现与亚临界图灵的不稳定性相关,并在不同类型的叶面蛇分叉结构中组织。这种行为反过来又与参数空间中的交换点有关,在该空间中,均匀浓度状态的复杂领先的空间特征值被一对真实特征值所取代。这一点在该系统中扮演着Belyakov-Devaney点的作用。主要的叶蛇结构由定期尖峰或峰值列车组成,具有$ n $相同的等距峰,$ n = 1,2,\ dots \,$,以及由非相同的,非Quidsenticant峰的交联。该结构被多种多重状态复杂化,其中一些也是计算的,并且跨越参数范围从主要图灵分叉一直到$ n = 1 $状态的折叠。这些状态形成一个复杂的模板,在该模板中,局部物理结构在2D中以横向方向发展。

An activator-inhibitor-substrate model of side-branching used in the context of pulmonary vascular and lung development is considered on the supposition that spatially localized concentrations of the activator trigger local side-branching. The model consists of four coupled reaction-diffusion equations and its steady localized solutions therefore obey an eight-dimensional spatial dynamical system in one dimension (1D). Stationary localized structures within the model are found to be associated with a subcritical Turing instability and organized within a distinct type of foliated snaking bifurcation structure. This behavior is in turn associated with the presence of an exchange point in parameter space at which the complex leading spatial eigenvalues of the uniform concentration state are overtaken by a pair of real eigenvalues; this point plays the role of a Belyakov-Devaney point in this system. The primary foliated snaking structure consists of periodic spike or peak trains with $N$ identical equidistant peaks, $N=1,2,\dots \,$, together with cross-links consisting of nonidentical, nonequidistant peaks. The structure is complicated by a multitude of multipulse states, some of which are also computed, and spans the parameter range from the primary Turing bifurcation all the way to the fold of the $N=1$ state. These states form a complex template from which localized physical structures develop in the transverse direction in 2D.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源