论文标题
Kaplan:一个3D点描述符用于形状完成
KAPLAN: A 3D Point Descriptor for Shape Completion
论文作者
论文摘要
我们提出了一种新颖的3D形状完成方法,该方法直接在非结构化点云上运行,从而避免了资源密集型数据结构(例如Voxel Grids)。为此,我们介绍了Kaplan,这是一个3D点描述符,该描述符通过一系列2D卷积汇总本地形状信息。关键的想法是将当地社区中的要点投射到具有不同方向的多个飞机上。在这些平面中的每一个中,将点属性(如正常或平面距离)汇总到2D网格中,并抽象成具有有效的2D卷积编码器的特征表示。由于所有飞机都是共同编码的,因此,由此产生的表示形式可以捕获其相关性,并保留有关基础3D形状的知识,而无需昂贵的3D卷积。公共数据集的实验表明,卡普兰(Kaplan)实现了3D形状完成的最新性能。
We present a novel 3D shape completion method that operates directly on unstructured point clouds, thus avoiding resource-intensive data structures like voxel grids. To this end, we introduce KAPLAN, a 3D point descriptor that aggregates local shape information via a series of 2D convolutions. The key idea is to project the points in a local neighborhood onto multiple planes with different orientations. In each of those planes, point properties like normals or point-to-plane distances are aggregated into a 2D grid and abstracted into a feature representation with an efficient 2D convolutional encoder. Since all planes are encoded jointly, the resulting representation nevertheless can capture their correlations and retains knowledge about the underlying 3D shape, without expensive 3D convolutions. Experiments on public datasets show that KAPLAN achieves state-of-the-art performance for 3D shape completion.