论文标题

主导目标语音的有效独立矢量提取

Efficient Independent Vector Extraction of Dominant Target Speech

论文作者

Liao, Lele, Gu, Zhaoyi, Lu, Jing

论文摘要

当只需要一个特定目标扬声器的语音时,盲源分离执行的完整分解是计算要求的。在本文中,我们提出了一种基于对普遍使用的独立矢量分析算法的适当修改的计算有效的盲目语音提取方法,这是在温和的假设中,即感兴趣的信号的平均功能超过干扰语音源。考虑到无法实现最小失真原理,因为没有完整的解散矩阵,我们还设计了一个单位缩放操作来解决缩放模棱两可。模拟验证了所提出方法提取主要语音的功效。

The complete decomposition performed by blind source separation is computationally demanding and superfluous when only the speech of one specific target speaker is desired. In this paper, we propose a computationally efficient blind speech extraction method based on a proper modification of the commonly utilized independent vector analysis algorithm, under the mild assumption that the average power of signal of interest outweighs interfering speech sources. Considering that the minimum distortion principle cannot be implemented since the full demixing matrix is not available, we also design a one-unit scaling operation to solve the scaling ambiguity. Simulations validate the efficacy of the proposed method in extracting the dominant speech.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源