论文标题

拜占庭的弹性分布式假设测试与时变网络拓扑

Byzantine-Resilient Distributed Hypothesis Testing With Time-Varying Network Topology

论文作者

Wu, Bo, Carr, Steven, Bharadwaj, Suda, Xu, Zhe, Topcu, Ufuk

论文摘要

我们在移动药物网络上研究了分布式假设检验的问题,其通信和感知范围有限,以协作推断真实的假设。特别是,我们考虑了一个场景,其中有一个未知的折衷代理子集,可以故意共享更改的信息以破坏团队目标。我们提出了两种分布式算法,其中每个代理都维护和更新两组信念(即,对假设的概率分布),即本地和实际信念(分别为LB和AB表示简洁)。在这两种算法中,在每个时间步骤中,每个代理商在通信范围内与其他代理商共享其AB,并进行本地观察以更新其LB。那么,两种算法都可以使用共享信息在某些条件下更新ABS。每次瞬间都需要收到一定数量的共享ABS;另一个会累积共享的ABS随着时间的推移,并在共享ABS的数量超过规定的阈值之后进行更新。否则,两种算法都依赖于代理的当前LB和AB来更新新的AB。我们证明,在温和的假设下,每种不受影响的药物的AB几乎肯定地融合到了真实的假设,而无需在基本的时变网络拓扑中连通性。我们使用旨在对对抗者进行分类的无人飞行器团队的模拟,我们说明并比较了拟议的算法。最后,我们通过实验表明,第二算法在收敛速度方面始终优于第一个算法。

We study the problem of distributed hypothesis testing over a network of mobile agents with limited communication and sensing ranges to infer the true hypothesis collaboratively. In particular, we consider a scenario where there is an unknown subset of compromised agents that may deliberately share altered information to undermine the team objective. We propose two distributed algorithms where each agent maintains and updates two sets of beliefs (i.e., probability distributions over the hypotheses), namely local and actual beliefs (LB and AB respectively for brevity). In both algorithms, at every time step, each agent shares its AB with other agents within its communication range and makes a local observation to update its LB. Then both algorithms can use the shared information to update ABs under certain conditions. One requires receiving a certain number of shared ABs at each time instant; the other accumulates shared ABs over time and updates after the number of shared ABs exceeds a prescribed threshold. Otherwise, both algorithms rely on the agent's current LB and AB to update the new AB. We prove under mild assumptions that the AB for every non-compromised agent converges almost surely to the true hypothesis, without requiring connectivity in the underlying time-varying network topology. Using a simulation of a team of unmanned aerial vehicles aiming to classify adversarial agents among themselves, we illustrate and compare the proposed algorithms. Finally, we show experimentally that the second algorithm consistently outperforms the first algorithm in terms of the speed of convergence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源