论文标题

关于两分量子系统的统一动力学产生的错误

On errors generated by unitary dynamics of bipartite quantum systems

论文作者

Amosov, G. G., Mokeev, A. S.

论文摘要

在给定量子通道时,可以定义非交通运算符的图形,该属性确定了通过此通道进行信息传输的可能性。相应的图通过确定量子误差的kraus操作员具有直接的定义。我们正在讨论某些图对应的错误的正确定义的相反问题。考虑到某些POVM生成的任何图形,我们通过Naimark扩张定理给出了解决此类问题的解决方案。使用我们的方法,我们构建了与双分量量子系统单位动力学生成的图相对应的误差。讨论了Circle组$ {\ Mathbb Z} _n $和添加剂$ \ Mathbb r $的POVMS案例。作为一个例子,我们构造了与两个模式量子振荡器的动力学生成的误差相对应的图。

Given a quantum channel it is possible to define the non-commutative operator graph whose properties determine a possibility of error-free transmission of information via this channel. The corresponding graph has a straight definition through Kraus operators determining quantum errors. We are discussing the opposite problem of a proper definition of errors that some graph corresponds to. Taking into account that any graph is generated by some POVM we give a solution to such a problem by means of the Naimark dilatation theorem. Using our approach we construct errors corresponding to the graphs generated by unitary dynamics of bipartite quantum systems. The cases of POVMs on the circle group ${\mathbb Z}_n$ and the additive group $\mathbb R$ are discussed. As an example we construct the graph corresponding to the errors generated by dynamics of two mode quantum oscillator.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源