论文标题
使用各向异性元面的低功率光学陷阱:不对称的势垒和宽带响应
Low-Power Optical Traps using Anisotropic Metasurfaces: Asymmetric Potential Barriers and Broadband Response
论文作者
论文摘要
我们建议使用量身定制的各向异性和双曲线偏移的光学诱捕,并用线性极化的高斯束照亮。该平台允许在光束轴处进行光学陷阱,并通过在光散射过程中从超固定表面等离子的定向激发产生的非保守和巨型后坐力力量控制的响应。与设置在散装金属上的光学陷阱相比,所提出的陷阱是宽带,从可以在元素面支持表面等离子体的宽范围内的任何频率上振荡的宽带。在该范围内,跨表面通过拓扑过渡从各向异性椭圆形变为双曲线状态,并可以使具有独特的空间不对称电势分布的光学陷阱,局部潜在屏障,由激发离子子的动量失衡引起,并允许使用稳定的Nanoparts appaping low-proptape the Exptim the Ext the Extim Intrame complance。为了调查该平台的性能,我们基于瑞利近似中的洛伦兹力与各向异性绿色的功能相结合,开发了严格的形式主义,并使用Helmholtz-Hodge分解方法计算了非保守力的捕获潜力。量身定制的各向异性和双曲线跨面是通常通过纳米结构的薄金属层实现的,可以使用在可见光中运行的低强度激光源或IR在纳米级中捕获和操纵颗粒,并可以在生物工程,物理,物理,物理和化学中捕获和操纵颗粒。
We propose the optical trapping of Rayleigh particles using tailored anisotropic and hyperbolic metasurfaces illuminated with a linearly polarized Gaussian beam. This platform permits to engineer optical traps at the beam axis with a response governed by nonconservative and giant recoil forces coming from the directional excitation of ultra-confined surface plasmons during the light scattering process. Compared to optical traps set over bulk metals, the proposed traps are broadband in the sense that can be set with beams oscillating at any frequency within the wide range in which the metasurface supports surface plasmons. Over that range, the metasurface evolves from an anisotropic elliptic to a hyperbolic regime through a topological transition and enables optical traps with distinctive spatially asymmetric potential distribution, local potential barriers arising from the momentum imbalance of the excited plasmons, and an enhanced potential depth that permits the stable trapping of nanoparticles using low-intensity laser beams. To investigate the performance of this platform, we develop a rigorous formalism based on the Lorentz force within the Rayleigh approximation combined with anisotropic Green's functions and calculate the trapping potential of nonconservative forces using the Helmholtz-Hodge decomposition method. Tailored anisotropic and hyperbolic metasurfaces, commonly implemented by nanostructuring thin metallic layers, enables using low-intensity laser sources operating in the visible or the IR to trap and manipulate particles at the nanoscale, and may enable a wide range of applications in bioengineering, physics, and chemistry.