论文标题

在$(σ,τ)$ - 组代数的派生为类别字符

On $(σ,τ)$-derivations of group algebra as category characters

论文作者

Alekseev, Aleksandr, Arutyunov, Andronick, Silvestrov, Sergei

论文摘要

对于$(σ,τ)$的空间,组代数$ \ mathbb {c} [g} [g] $是离散的$ g $的$,$(σ,τ)$的空间的分解定理 - 派生,派生,对基于组的普通衍生物的概括为gergebras和algebras contect and and Cections and and and context context context and and and and context context context context contect and and and context。几个推论和示例描述了何时获得所有$(σ,τ)$ - 派生的内在。在$(σ,τ)上的详细案例中考虑了$ nilpotent组和$(σ,τ)$ - $ fc $组。

For the space of $(σ,τ)$-derivations of the group algebra $ \mathbb{C} [G] $ of discrete countable group $G$, the decomposition theorem for the space of $(σ,τ)$-derivations, generalising the corresponding theorem on ordinary derivations on group algebras, is established in an algebraic context using groupoids and characters. Several corollaries and examples describing when all $(σ,τ)$-derivations are inner are obtained. Considered in details cases on $(σ,τ)-$nilpotent groups and $(σ,τ)$-$FC$ groups.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源