论文标题

幂律人口异质性控制流行波

Power-Law Population Heterogeneity Governs Epidemic Waves

论文作者

Neipel, Jonas, Bauermann, Jonathan, Bo, Stefano, Harmon, Tyler, Jülicher, Frank

论文摘要

我们将易感感染的模型推广到流行病,以考虑异质性在人群中感染的易感程度上的一般影响。我们引入了一个与易感分布的幂律指数相对应的单个新参数,该分布的特征是人口异质性。我们表明,我们的广义模型与原始模型一样简单,该模型包含是限制情况。由于这种简单性,可以轻松地生成数值解,并且仍然可以准确获得流行波浪的关键特性。特别是,我们介绍了牛群免疫水平的精确表达,流行病的最终大小以及波的形状以及可以在流行病期间进行量化的可观察物。我们发现,在强烈的异质种群中,流行病仅达到一小部分人口。这意味着牛群免疫水平可能比具有同质种群的常用模型要低得多。使用我们的模型来分析德国SARS-COV-2流行病的数据表明,所报告的时间过程与以不同水平免疫力为特征的几种情况一致。这些方案在人口异质性和感染率的时间过程中有所不同,例如由于缓解工作或季节性。我们的分析表明,量化缓解措施的影响需要了解人群中异质性程度的知识。我们的工作表明,可以在不增加模型的复杂性的情况下捕获种群异质性的关键影响。我们表明,有关人口异质性的信息将是了解流行病的进展以及其未来过程的期望的关键。

We generalize the Susceptible-Infected-Removed model for epidemics to take into account generic effects of heterogeneity in the degree of susceptibility to infection in the population. We introduce a single new parameter corresponding to a power-law exponent of the susceptibility distribution that characterizes the population heterogeneity. We show that our generalized model is as simple as the original model which is contained as a limiting case. Because of this simplicity, numerical solutions can be generated easily and key properties of the epidemic wave can still be obtained exactly. In particular, we present exact expressions for the herd immunity level, the final size of the epidemic, as well as for the shape of the wave and for observables that can be quantified during an epidemic. We find that in strongly heterogeneous populations the epidemic reaches only a small fraction of the population. This implies that the herd immunity level can be much lower than in commonly used models with homogeneous populations. Using our model to analyze data for the SARS-CoV-2 epidemic in Germany shows that the reported time course is consistent with several scenarios characterized by different levels of immunity. These scenarios differ in population heterogeneity and in the time course of the infection rate, for example due to mitigation efforts or seasonality. Our analysis reveals that quantifying the effects of mitigation requires knowledge on the degree of heterogeneity in the population. Our work shows that key effects of population heterogeneity can be captured without increasing the complexity of the model. We show that information about population heterogeneity will be key to understand how far an epidemic has progressed and what can be expected for its future course.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源