论文标题

重复的神经结构的命运

Fate of Duplicated Neural Structures

论文作者

Seoane, Luís F

论文摘要

统计力学根据成本效益余额确定了不同物质排列的丰度。它的形式主义和现象学在整个生物学过程中渗透,并将限制限制为有效计算。在特定条件下,自我复制和计算复杂的模式被偏爱,产生生命,认知和达尔文的进化。神经元和神经回路位于统计力学,计算和(通过认知中的作用)自然选择之间的十字路口。我们可以建立神经回路的{\ em统计物理学}吗?这种理论将说明在设定的能量,进化和计算条件下会期望什么样的大脑。考虑到这一点,我们专注于重复的神经回路的命运。我们查看中枢神经系统中的示例,对计算阈值的压力可能会促使这种冗余。我们还研究了实施复杂表型的重复电路的幼稚成本效益平衡。由此,我们得出了{\ em相位图}和单个和重复的电路之间的(类似相的)跃迁,这将进化路径限制为复杂的认知。回到全局,相似的相图和过渡可能会限制I/O和整个神经回路的内部连接模式。统计力学的形式主义似乎是值得研究的自然框架。

Statistical mechanics determines the abundance of different arrangements of matter depending on cost-benefit balances. Its formalism and phenomenology percolate throughout biological processes and set limits to effective computation. Under specific conditions, self-replicating and computationally complex patterns become favored, yielding life, cognition, and Darwinian evolution. Neurons and neural circuits sit at a crossroads between statistical mechanics, computation, and (through their role in cognition) natural selection. Can we establish a {\em statistical physics} of neural circuits? Such theory would tell what kinds of brains to expect under set energetic, evolutionary, and computational conditions. With this big picture in mind, we focus on the fate of duplicated neural circuits. We look at examples from central nervous systems, with a stress on computational thresholds that might prompt this redundancy. We also study a naive cost-benefit balance for duplicated circuits implementing complex phenotypes. From this we derive {\em phase diagrams} and (phase-like) transitions between single and duplicated circuits, which constrain evolutionary paths to complex cognition. Back to the big picture, similar phase diagrams and transitions might constrain I/O and internal connectivity patterns of neural circuits at large. The formalism of statistical mechanics seems a natural framework for thsi worthy line of research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源