论文标题

在并行服务器模型中分布式调度

Distributed Dispatching in the Parallel Server Model

论文作者

Goren, Guy, Vargaftik, Shay, Moses, Yoram

论文摘要

随着云服务和数据中心的规模和数量的迅速增加,具有多个工作机会的架构正在迅速成为规范。负载平衡是此类系统的关键要素。然而,当前在此类系统中加载平衡的解决方案承认了一种自相矛盾的行为,在这种行为中,有关服务器队列长度的更准确的信息会因放牧和有害的无关效果而降低性能。确实,在理论上和实践中,对于在多dispatcher负载平衡的背景下的信息价值都有一个普遍的疑问。结果,研究人员和系统设计师都采取了更直接的解决方案,例如两次选择权,以避免最坏情况,从而牺牲了总体资源利用和系统性能。我们调查的主要重点涉及在多距离捕获器设置中有关队列长度的信息的价值。我们认为,以多个调度程序的核心,负载平衡是一项分布式计算任务。从那时起,我们提出了一种新的派遣方法,称为潮水填充,该方法涉及系统的分布性质。具体而言,通过将其他调度员的存在纳入决策过程,我们的协议在许多情况下都优于以前的解决方案。特别是,当调度员拥有有关服务器队列的完整而准确的信息时,我们的策略将大大优于所有现有解决方案。

With the rapid increase in the size and volume of cloud services and data centers, architectures with multiple job dispatchers are quickly becoming the norm. Load balancing is a key element of such systems. Nevertheless, current solutions to load balancing in such systems admit a paradoxical behavior in which more accurate information regarding server queue lengths degrades performance due to herding and detrimental incast effects. Indeed, both in theory and in practice, there is a common doubt regarding the value of information in the context of multi-dispatcher load balancing. As a result, both researchers and system designers resort to more straightforward solutions, such as the power-of-two-choices to avoid worst-case scenarios, potentially sacrificing overall resource utilization and system performance. A principal focus of our investigation concerns the value of information about queue lengths in the multi-dispatcher setting. We argue that, at its core, load balancing with multiple dispatchers is a distributed computing task. In that light, we propose a new job dispatching approach, called Tidal Water Filling, which addresses the distributed nature of the system. Specifically, by incorporating the existence of other dispatchers into the decision-making process, our protocols outperform previous solutions in many scenarios. In particular, when the dispatchers have complete and accurate information regarding the server queues, our policies significantly outperform all existing solutions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源