论文标题

具有无症状载体的时间网络上的广义SIS流行模型,并评论衰减比

A Generalized SIS Epidemic Model on Temporal Networks with Asymptomatic Carriers and Comments on Decay Ratio

论文作者

Hota, Ashish R., Gupta, Kavish

论文摘要

我们研究了SIS流行在时间网络上的类别,并提出了一种新的活动驱动和适应性流行病模型,该模型捕获了网络中无症状和传染性个体的影响。在提议的模型中,称为A-SIYS流行病,每个节点都可以在三种可能的状态中:易感性,无症状或无症状的感染,并感染症状或症状。无症状和有症状的个体都是传染性的。我们表明,拟议的A-SIYS流行病捕获了几种良好的流行病模型作为特殊情况,并获得了足够的条件,在这些情况下,通过诉诸于平均场近似值来消除该疾病。 此外,我们强调了在活动驱动的自适应SIS(A-SIS)模型(Oguraet。Al。,2019年)中的衰减比的推导中的潜在不准确性,并呈现其结果的更一般版本。我们从数值上说明了A-SIS流行模型中感染节点的比例的演变,并表明(Ogura等人,2019年)中的结合通常无法捕获流行病的行为与我们的结果相反。

We study the class of SIS epidemics on temporal networks and propose a new activity-driven and adaptive epidemic model that captures the impact of asymptomatic and infectious individuals in the network. In the proposed model, referred to as the A-SIYS epidemic, each node can be in three possible states: susceptible, infected without symptoms or asymptomatic and infected with symptoms or symptomatic. Both asymptomatic and symptomatic individuals are infectious. We show that the proposed A-SIYS epidemic captures several well-established epidemic models as special cases and obtain sufficient conditions under which the disease gets eradicated by resorting to mean-field approximations. In addition, we highlight a potential inaccuracy in the derivation of the upper bound on the decay ratio in the activity-driven adaptive SIS (A-SIS) model in (Ogura et. al., 2019) and present a more general version of their result. We numerically illustrate the evolution of the fraction of infected nodes in the A-SIS epidemic model and show that the bound in (Ogura et. al., 2019) often fails to capture the behavior of the epidemic in contrast with our results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源