论文标题
模量支持功能,Rajchman措施和峰值功能
Modulus support functionals, Rajchman measures and peak functions
论文作者
论文摘要
在2000 V. lomonosov中,提出了对模量支持功能的主教定理的复杂版本的反例。我们讨论了该示例的$ C_0 $ -ANALOG,并证明了SUP ATDANTANE功能的集合是非平凡的,因此回答了一个开放的问题,该问题在\ cite {klmw}中询问。
In 2000 V. Lomonosov suggested a counterexample to the complex version of the Bishop-Phelps theorem on modulus support functionals. We discuss the $c_0$-analog of that example and demonstrate that the set of sup-attaining functionals is non-trivial, thus answering an open question, asked in \cite{KLMW}.