论文标题
MSSM中的higgsino暗物质
Higgsino Dark Matter in the MSSM
论文作者
论文摘要
来自几乎纯$ su(2)$ doublet的稳定的中性组件,具有质量$ \ sim $ 1.1 tev,是与所有直接暗物质搜索一致的暗物质(DM)的吸引人的候选人。在标准模型(MSSM)的最小超对称扩展的背景下,我们已经探讨了这种可能性,而希格斯诺咖啡在统一相互作用是通过在统一的统一相互作用传播的理论中扮演了DM的作用,而在统一的unification Scale $ m \ simeq 2 \ simeq 2 \ simeq 2 \ simeq 2 \ simeq times 10^{16} $ GEV。我们将工作重点放在寻找“光”超对称光谱上,这些光谱可以触及现在和/或将来的山脉,以通用和非普遍的希格斯和gaugino Majora群众的模型。频谱中最轻的超对称颗粒是通过构造的两个中性和一个chargino,几乎退化,质量$ \ sim $ 1.1 $ 1.1 tev,质量分配了一些GEV。根据特定情况,Gluino可以处于实验性质量下限$ \ sim $ 2.2 TEV;在海滩行业中,最轻的停靠点可以像$ \ sim $ 1.3 TEV一样轻,而最轻的Slecton,右手Stau的Slecton可以具有$ 1.2 $ 1.2 $ TEV的质量。在下一代直接暗物质实验搜索中可以找到最轻的中性诺。在最有利的情况下,在大型强子对撞机(LHC)的下一次运行中,Gluino带有一些特定的衰减通道,并且在高光度LHC运行时最轻的停止。
A comologically stable neutral component from a nearly pure $SU(2)$ doublet, with a mass $\sim$1.1 TeV, is one appealing candidate for dark matter (DM) consistent with all direct dark matter searches. We have explored this possibility in the context of the Minimal Supersymmetric extension of the Standard Model (MSSM), with the Higgsino playing the role of DM, in theories where supersymmetry breaking is transmitted by gravitational interactions at the unification scale $M\simeq 2\times 10^{16}$ GeV. We have focussed our work in the search of "light" supersymmetric spectra, which could be at reach of present and/or future colliders, in models with universal and non-universal Higgs and gaugino Majorana masses. The lightest supersymmetric particles of the spectrum are, by construction, two neutralinos and one chargino, almost degenerate, with a mass $\sim $1.1 TeV, and a mass splitting of a few GeV. Depending on the particular scenario the gluino can be at its experimental mass lower bound $\sim$ 2.2 TeV; in the squark sector, the lightest stop can be as light as $\sim$ 1.3 TeV, and the lightest slepton, the right-handed stau, can have a mass as light as $1.2$ TeV. The lightest neutralino can be found at the next generation of direct dark matter experimental searches. In the most favorable situation, the gluino, with some specific decay channels, could be found at the next run of the Large Hadron Collider (LHC), and the lightest stop at the High-Luminosity LHC run.