论文标题

增强自主性透明度:以期权为中心的理由方法

Enhancing autonomy transparency: an option-centric rationale approach

论文作者

Luo, Ruikun, Du, Na, Yang, X. Jessie

论文摘要

尽管人工智能和机器学习的进步增强了新一代的自主系统来协助人类绩效,但从人为因素的角度出现了一个主要的关注:人类难以破译自主性生成的解决方案,并将越来越多的自治视为神秘的黑匣子。缺乏透明度会导致缺乏对自治和次优的团队绩效的信任。为了提高自主性透明度,本研究提出了以期权为中心的理由显示并评估其有效性。我们开发了一个游戏寻宝者,其中人类在智能助手的帮助下发现了一张珍宝的地图,并与34名参与者进行了人类的实验。结果表明,通过以选项为中心的理由展示传达智能助手的决策理由,参与者对系统具有更高的信任,并更快地校准了他们的信任。此外,更高的信任导致智能助手的建议更高,进而使任务绩效更高。

While the advances in artificial intelligence and machine learning empower a new generation of autonomous systems for assisting human performance, one major concern arises from the human factors perspective: Humans have difficulty deciphering autonomy-generated solutions and increasingly perceive autonomy as a mysterious black box. The lack of transparency contributes to the lack of trust in autonomy and sub-optimal team performance. To enhance autonomy transparency, this study proposed an option-centric rationale display and evaluated its effectiveness. We developed a game Treasure Hunter wherein a human uncovers a map for treasures with the help from an intelligent assistant, and conducted a human-in-the-loop experiment with 34 participants. Results indicated that by conveying the intelligent assistant's decision-making rationale via the option-centric rationale display, participants had higher trust in the system and calibrated their trust faster. Additionally, higher trust led to higher acceptance of recommendations from the intelligent assistant, and in turn higher task performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源