论文标题

多码系统中动态校正门的几何形式主义

Geometrical Formalism for Dynamically Corrected Gates in Multiqubit Systems

论文作者

Buterakos, Donovan, Sarma, Sankar Das, Barnes, Edwin

论文摘要

对噪声强大的多Quait系统进行门的能力对于量子信息技术的发展至关重要。但是,由于时间依赖性的Schrodinger方程,尤其是在多Quilbit Systems中,很难找到在执行门时取消噪声的控制脉冲。在这里,我们表明可以通过使用形式主义来避开此问题,在这种形式主义中,在多维欧几里得空间中,门中的累积误差以几何表示为曲线。取消噪声误差对领先顺序对应于曲线的闭合,这种情况可以在不求解Schrodinger方程的情况下得到满足。我们开发和揭示了这种几何形式主义的一般特性,并得出了递归关系,该递归关系将控制场映射到任意维度的哈密顿人的曲率。我们通过使用几何方法来展示示例,以设计与超导式跨导量和半导体旋转量子量相关的两量汉密尔顿人的动态校正门。我们将这种几何形式主义作为一种通用技术,用于量子计算门操作中脉冲诱导的误差抑制。

The ability to perform gates in multiqubit systems that are robust to noise is of crucial importance for the advancement of quantum information technologies. However, finding control pulses that cancel noise while performing a gate is made difficult by the intractability of the time-dependent Schrodinger equation, especially in multiqubit systems. Here, we show that this issue can be sidestepped by using a formalism in which the cumulative error during a gate is represented geometrically as a curve in a multi-dimensional Euclidean space. Cancellation of noise errors to leading order corresponds to closure of the curve, a condition that can be satisfied without solving the Schrodinger equation. We develop and uncover general properties of this geometric formalism, and derive a recursion relation that maps control fields to curvatures for Hamiltonians of arbitrary dimension. We demonstrate examples by using the geometric method to design dynamically corrected gates for a class of two-qubit Hamiltonians that is relevant for both superconducting transmon qubits and semiconductor spin qubits. We propose this geometric formalism as a general technique for pulse-induced error suppression in quantum computing gate operations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源