论文标题
界面自旋轨道扭矩
Interfacial spin-orbit torques
论文作者
论文摘要
自旋轨道扭矩为纳米级异质结构中电气控制磁化动力学提供了有希望的机制。虽然自旋轨道扭矩主要出现在界面上,但这些扭矩的物理机制可以起源于散装层和界面。基于其起源于区域的区域对自旋轨道扭矩进行分类提供了有关如何优化效果的线索。尽管对大多数散装旋转轨道扭矩的贡献进行了充分的研究,但对称性允许的许多界面贡献尚未在理论和实验上进行全面探索。为了促进进步,我们从半经典的角度回顾了界面自旋轨道扭矩,并将这些贡献与最近的实验结果相关联。在同一模型中,我们显示了不同接口传输参数之间的关系。对于垂直于界面流动的电荷和旋转,界面自旋轨道耦合都会修饰磁电流电路理论的混合电导,并导致自旋记忆丧失。对于平面电场,界面自旋 - 轨耦合会产生通过自旋轨道滤波,自旋交换和进动描述的扭矩。另外,这些相同的界面过程会产生流入非磁层的自旋电流。对于三层结构中的平面电场,在一个铁磁层和非磁性间隔层之间在界面上产生的自旋电流可以通过非磁性层传播,以在其他铁磁层上产生新的扭矩。
Spin-orbit torques offer a promising mechanism for electrically controlling magnetization dynamics in nanoscale heterostructures. While spin-orbit torques occur predominately at interfaces, the physical mechanisms underlying these torques can originate in both the bulk layers and at interfaces. Classifying spin-orbit torques based on the region that they originate in provides clues as to how to optimize the effect. While most bulk spin-orbit torque contributions are well studied, many of the interfacial contributions allowed by symmetry have yet to be fully explored theoretically and experimentally. To facilitate progress, we review interfacial spin-orbit torques from a semiclassical viewpoint and relate these contributions to recent experimental results. Within the same model, we show the relationship between different interface transport parameters. For charges and spins flowing perpendicular to the interface, interfacial spin-orbit coupling both modifies the mixing conductance of magnetoelectronic circuit theory and gives rise to spin memory loss. For in-plane electric fields, interfacial spin-orbit coupling gives rise to torques described by spin-orbit filtering, spin swapping and precession. In addition, these same interfacial processes generate spin currents that flow into the non-magnetic layer. For in-plane electric fields in trilayer structures, the spin currents generated at the interface between one ferromagnetic layer and the non-magnetic spacer layer can propagate through the non-magnetic layer to produce novel torques on the other ferromagnetic layer.