论文标题
HERMITE半群的相空间分析以及对非线性全球良好型的应用
Phase space analysis of the Hermite semigroup and applications to nonlinear global well-posedness
论文作者
论文摘要
我们研究了$ \ Mathbb {r}^d $中的HERMITE操作员$ H =-Δ+| X |^2 $及其分数powers $ h^β$,$β$,$β> 0 $在相位空间中。 Namely, we represent functions $f$ via the so-called short-time Fourier, alias Fourier-Wigner or Bargmann transform $V_g f$ ($g$ being a fixed window function), and we measure their regularity and decay by means of mixed Lebesgue norms in phase space of $V_g f$, that is in terms of membership to modulation spaces $M^{p,q}$, $0< p,q\leq \ infty $。我们证明,每次$ 0 <p,q \ leq \ infty $在$ m^{p,q} $上进行作用时,Semigroup $ e^{ - th^β} $的固定时间估计的完整范围,表现出最佳的全球时间衰减以及相位空间平滑。作为一种应用,我们为$ H^β$的非线性热方程式建立了具有功率类型非线性(聚焦或散热性)的全球供应,并在调制空间或Wiener amalgam空间中具有较小的初始数据。我们表明,这样的全局解决方案表现出相同的最佳衰减$ e^{ - c t} $与相应线性方程的解,其中$ c = d^β$是$ h^β$的光谱的底部。这与没有潜力的非线性聚焦热量方程式发生的情况形成了鲜明对比,在这种情况下,在有限的时间内总是发生(甚至是小)恒定初始数据 - 因此,$ m^{\ infty,1} $。
We study the Hermite operator $H=-Δ+|x|^2$ in $\mathbb{R}^d$ and its fractional powers $H^β$, $β>0$ in phase space. Namely, we represent functions $f$ via the so-called short-time Fourier, alias Fourier-Wigner or Bargmann transform $V_g f$ ($g$ being a fixed window function), and we measure their regularity and decay by means of mixed Lebesgue norms in phase space of $V_g f$, that is in terms of membership to modulation spaces $M^{p,q}$, $0< p,q\leq \infty$. We prove the complete range of fixed-time estimates for the semigroup $e^{-tH^β}$ when acting on $M^{p,q}$, for every $0< p,q\leq \infty$, exhibiting the optimal global-in-time decay as well as phase-space smoothing. As an application, we establish global well-posedness for the nonlinear heat equation for $H^β$ with power-type nonlinearity (focusing or defocusing), with small initial data in modulation spaces or in Wiener amalgam spaces. We show that such a global solution exhibits the same optimal decay $e^{-c t}$ as the solution of the corresponding linear equation, where $c=d^β$ is the bottom of the spectrum of $H^β$. This is in sharp contrast to what happens for the nonlinear focusing heat equation without potential, where blow-up in finite time always occurs for (even small) constant initial data - hence in $M^{\infty,1}$.