论文标题

任何傅立叶级别的分数伪和发电机

Fractional Pseudorandom Generators from Any Fourier Level

论文作者

Chattopadhyay, Eshan, Gaitonde, Jason, Lee, Chin Ho, Lovett, Shachar, Shetty, Abhishek

论文摘要

我们证明了在Chattopadhyay {et al。} [CHHL19,CHLT19]最近的偏振随机步行框架上的新结果,该作品利用了$ L_1 $ L_1 $ L_1 $ L_1 $ fourier Tail界限,用于构造Pseudorandom Generators(PRGS)的布尔功能类别。我们表明,鉴于傅立叶光谱的$ k $ 3级,可以构建一个带有种子长度的PRG,其质量缩放为$ k $。这插入了先前的工作,该作品要么需要在所有级别上[CHHL19]上的傅立叶界限,要么对种子长度[CHLT10]中的误差参数具有多项式依赖性,因此在[CHLT19]中回答了一个空的问题。例如,我们表明,对于多项式误差,第一个$ O(\ log n)$级别上的傅立叶范围足以恢复[CHHL19]中的种子长度,这需要整个尾巴上的界限。 我们通过使用Taylor的定理对分数PRG进行替代分析,并使用多线性和随机限制来界定$ K $ lagrange剩余项。有趣的是,我们的分析仅依赖于\ emph {level-k unsigned傅立叶总和},这可能比以前的工作中的$ l_1 $概念要小得多。通过概括[CHH+20]中建立的连接,我们从构造PRG到证明相关界限给出了新的减少。最后,使用这些改进,我们展示了如何获得$ \ mathbb {f} _2 $多项式的PRG,其种子长度靠近Viola [Vio09]的最先进的结构,而使用此框架是不可能的。

We prove new results on the polarizing random walk framework introduced in recent works of Chattopadhyay {et al.} [CHHL19,CHLT19] that exploit $L_1$ Fourier tail bounds for classes of Boolean functions to construct pseudorandom generators (PRGs). We show that given a bound on the $k$-th level of the Fourier spectrum, one can construct a PRG with a seed length whose quality scales with $k$. This interpolates previous works, which either require Fourier bounds on all levels [CHHL19], or have polynomial dependence on the error parameter in the seed length [CHLT10], and thus answers an open question in [CHLT19]. As an example, we show that for polynomial error, Fourier bounds on the first $O(\log n)$ levels is sufficient to recover the seed length in [CHHL19], which requires bounds on the entire tail. We obtain our results by an alternate analysis of fractional PRGs using Taylor's theorem and bounding the degree-$k$ Lagrange remainder term using multilinearity and random restrictions. Interestingly, our analysis relies only on the \emph{level-k unsigned Fourier sum}, which is potentially a much smaller quantity than the $L_1$ notion in previous works. By generalizing a connection established in [CHH+20], we give a new reduction from constructing PRGs to proving correlation bounds. Finally, using these improvements we show how to obtain a PRG for $\mathbb{F}_2$ polynomials with seed length close to the state-of-the-art construction due to Viola [Vio09], which was not known to be possible using this framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源