论文标题
粒子运动的混乱在黑洞附近,带有准电子电磁学
Chaos of Particle Motion near the Black Hole with Quasi-topological Electromagnetism
论文作者
论文摘要
我们探索了与准电磁电磁作用的黑洞中粒子运动的混乱行为。发现混乱的结合在公制函数的高阶扩展和地平线附近的电势中受到侵犯。我们分别绘制了与结合的混乱和非暴力情况相对应的粒子运动的繁殖部分。然后,我们研究由静态平衡定义的最大lyapunov指数λ_s与粒子大地测量运动的Lyapunov指数在Reissner-Nordstrom(RN)黑洞附近的Lyapunov指数与带有准语言电磁的黑洞附近。我们发现光子径向的lyapunov指数λ_{ph}落入黑洞与最大lyapunov指数λ_s之间的有趣关系。对于标准函数在半径外部地平线的单调增加的黑洞,这将导致λ_{ph} \ geq2λ_s。
We explore the chaotic behavior of particle motion in a black hole with quasi-topological electromagnetism. The chaos bound is found to be violated in the higher order expansion of the metric function and the electric potential near the horizon. We draw the Poincare sections of particle motion corresponding to the chaos bound violated and non-violated cases, respectively. Then we study the relationship between the maximal Lyapunov exponent λ_s defined by the static equilibrium and the Lyapunov exponent of the particle geodesic motion near the Reissner-Nordstrom(RN) black hole and the black hole with quasi-topological electromagnetism. We find an interesting relationship between the Lyapunov exponent λ_{ph} of photon's radial falling into the black hole and the maximal Lyapunov exponent λ_s. For the black holes whose metric function increases monotonically with radius outside horizon, this leads to λ_{ph} \geq 2λ_s.