论文标题
核散射过程中的谎言球几何形状
Lie sphere geometry in nuclear scattering processes
论文作者
论文摘要
Lie球几何形状是Möbius几何形状的自然延伸,后者在弦理论和ADS/CFT对应关系中非常重要。下列球几何形状的扩展在以下几何序列中应用于Möbius几何形状,该几何形状最近已在双色矩阵表示中进行了研究。当从起源点几何形状开始的反向投影引起较高的时空几何形状时,与先前的表示相比,Lie Sphere方案提供了更自然的Clifford代数的结构。生成的克利福德代数产生的自旋结构可能可能用于内部粒子对称性的几何化。一个简单的模型,其中包括电磁自旋,弱的同胞素和辐射式同胞素,建议进一步验证。
The Lie sphere geometry is a natural extension of the Möbius geometry, where the latter is very important in string theory and the AdS/CFT correspondence. The extension to Lie sphere geometry is applied in the following to a sequence of Möbius geometries, which has been investigated recently in a bicomplex matrix representation. When higher dimensional space-time geometries are invoked by inverse projections starting from an originating point geometry, the Lie sphere scheme provides a more natural structure of the involved Clifford algebras compared to the previous representation. The spin structures resulting from the generated Clifford algebras can potentially be used for the geometrization of internal particle symmetries. A simple model, which includes the electromagnetic spin, the weak isospin, and the hadronic isospin, is suggested for further verification.