论文标题
非线性电动力学模型中的碰撞波
Colliding waves in a model of nonlinear electrodynamics
论文作者
论文摘要
爱因斯坦 - 马克斯韦尔(EM)理论中用于碰撞电磁波的贝尔 - 西凯克(BS)解决方案也描述了非线性电动力学(NED)中的碰撞波,并具有新兴的宇宙学常数。我们的NED模型涵盖了众所周知的Heisenberg-euler(He)在特定纯磁场量表中类型的第一个领先订单。在发生碰撞问题之前,我们在同型平坦的时空中获得了二合一理论的敌对解决方案,该时期的电场和磁场都具有恒定的不变性。我们的唯一发现是,在NED理论中平面波的碰撞过程中不可避免地会出现无电流。
Bell-Szekeres (BS) solution for colliding electromagnetic waves in Einstein-Maxwell (EM) theory describes also colliding waves in nonlinear electrodynamics (NED) with an emergent cosmological constant. Our NED model covers the first leading orders to the well-known Heisenberg-Euler (HE) type in a particular gauge of pure magnetic field. Prior to the problem of collision we obtain dyonic solution for the considered NED theory in a conformally flat spacetime which has both electric and magnetic fields with constant invariants. Our sole finding is that null currents inevitably arise in the process of collision of plane waves in the HE type NED theory.