论文标题
与图形神经网络的交互式在线问题库中的同行启发的学生绩效预测
Peer-inspired Student Performance Prediction in Interactive Online Question Pools with Graph Neural Network
论文作者
论文摘要
学生绩效预测对于在线教育至关重要。它可以使在线学习平台上的许多下游任务受益,例如估计辍学率,促进战略干预并启用自适应在线学习。交互式在线问题池为学生提供有趣的互动问题,以实践他们在在线教育方面的知识。但是,关于互动在线问题库中学生绩效预测的研究很少。现有的关于学生绩效预测目标的工作在线学习平台上具有预定义的课程课程和准确的知识标签(例如MOOC平台),但他们无法在交互式在线问题库中完全模拟学生的知识演变。在本文中,我们提出了一种使用图神经网络(GNN)的新方法,以在交互式在线问题库中获得更好的学生绩效预测。具体而言,我们使用学生互动来建立学生与问题之间的关系来构建学生互动问题网络,并进一步提出了一种名为R^2GCN的新型GNN模型,该模型本质上适用于异构网络,以实现交互式在线问题库中的可概括学生绩效预测。我们评估了方法对现实世界数据集的有效性,该数据集由104,113个鼠标轨迹组成,该鼠标轨迹在解决问题的过程中生成的4000多名学生在1631个问题上产生。实验结果表明,与传统的机器学习方法和GNN模型相比,我们的方法可以实现学生绩效预测的准确性。
Student performance prediction is critical to online education. It can benefit many downstream tasks on online learning platforms, such as estimating dropout rates, facilitating strategic intervention, and enabling adaptive online learning. Interactive online question pools provide students with interesting interactive questions to practice their knowledge in online education. However, little research has been done on student performance prediction in interactive online question pools. Existing work on student performance prediction targets at online learning platforms with predefined course curriculum and accurate knowledge labels like MOOC platforms, but they are not able to fully model knowledge evolution of students in interactive online question pools. In this paper, we propose a novel approach using Graph Neural Networks (GNNs) to achieve better student performance prediction in interactive online question pools. Specifically, we model the relationship between students and questions using student interactions to construct the student-interaction-question network and further present a new GNN model, called R^2GCN, which intrinsically works for the heterogeneous networks, to achieve generalizable student performance prediction in interactive online question pools. We evaluate the effectiveness of our approach on a real-world dataset consisting of 104,113 mouse trajectories generated in the problem-solving process of over 4000 students on 1631 questions. The experiment results show that our approach can achieve a much higher accuracy of student performance prediction than both traditional machine learning approaches and GNN models.