论文标题
偏光品种模量空间上的第二个主要定理
Second Main Theorem on the Moduli Spaces of Polarized Varieties
论文作者
论文摘要
令$(x,d)$为$ \ mathbb {c} $上的平滑日志对,这样补充$ u:= x \ setminus d $带有最大多样化的极化歧管家庭。我们通过使用该家庭的Viehweg-Zuo建设和麦奎兰的重言式不平等,证明了$(x,d)$的第二个主要定理版本。作为应用程序,我们概括了Nadel的经典结果,内容涉及两极家庭(压缩)基本空间中整个曲线的分布。
Let $(X,D)$ be a smooth log pair over $\mathbb{C}$ such that the complement $U := X \setminus D$ carries a maximally varied family of polarized manifolds. We prove a version of second main theorem on $(X,D)$ by using the Viehweg-Zuo construction of the family and McQuillan's tautological inequality. As an application, we generalize a classical result of Nadel about the distribution of entire curves in the (compactified) base space of polarized families.