论文标题
异质域适应的同时语义对齐网络
Simultaneous Semantic Alignment Network for Heterogeneous Domain Adaptation
论文作者
论文摘要
异质域的适应性(HDA)转移了跨源和目标域的知识,这些源域和目标域,例如不同的域分布以及特征类型或维度的差异。大多数以前的HDA方法通过学习域不变特征子空间来解决此问题,以减少域之间的差异。但是,数据中包含的内在语义特性在这种比对策略中尚未探索,这对于实现有希望的适应性也是必不可少的。在本文中,我们建议同时使用语义对准网络(SSAN),以同时利用类别之间的相关性,并使跨域的每个类别的质心对齐。特别是,我们提出了一个隐性的语义相关损失,以将源分类预测分布的相关知识转移到目标域。同时,通过利用目标伪标签,可将强大的三重态中心对准机制明确应用于每个类别的对齐特征表示。值得注意的是,引入了具有几何相似性的伪标签改进程序,以提高目标伪标签分配的精度。跨文本对图像,图像到图像和文本对文本的各种HDA任务的全面实验成功地验证了我们SSAN与最新的HDA方法的优越性。该代码可在https://github.com/bit-da/ssan上公开获取。
Heterogeneous domain adaptation (HDA) transfers knowledge across source and target domains that present heterogeneities e.g., distinct domain distributions and difference in feature type or dimension. Most previous HDA methods tackle this problem through learning a domain-invariant feature subspace to reduce the discrepancy between domains. However, the intrinsic semantic properties contained in data are under-explored in such alignment strategy, which is also indispensable to achieve promising adaptability. In this paper, we propose a Simultaneous Semantic Alignment Network (SSAN) to simultaneously exploit correlations among categories and align the centroids for each category across domains. In particular, we propose an implicit semantic correlation loss to transfer the correlation knowledge of source categorical prediction distributions to target domain. Meanwhile, by leveraging target pseudo-labels, a robust triplet-centroid alignment mechanism is explicitly applied to align feature representations for each category. Notably, a pseudo-label refinement procedure with geometric similarity involved is introduced to enhance the target pseudo-label assignment accuracy. Comprehensive experiments on various HDA tasks across text-to-image, image-to-image and text-to-text successfully validate the superiority of our SSAN against state-of-the-art HDA methods. The code is publicly available at https://github.com/BIT-DA/SSAN.