论文标题
通过深度学习从星系中揭示当地宇宙网络
Revealing the Local Cosmic Web from Galaxies by Deep Learning
论文作者
论文摘要
宇宙中80%的物质是用暗物质的形式,包括称为宇宙网络的大规模结构的骨骼。由于宇宙网络通过重力决定了星系中所有物质的运动,因此知道暗物质的分布对于研究大规模结构至关重要。但是,宇宙网的详细结构是未知的,因为它由暗物质和热热的半乳酸间介质主导,这两种介质都难以追踪。在这里,我们证明我们可以使用基于卷积的神经网络网络的深度学习算法从星系分布中重建宇宙网络。我们使用最先进的宇宙星系模拟的结果Illustris-tng发现了星系的位置和速度之间的映射和宇宙网络之间的映射。我们通过将其应用于Eagle模拟来确认映射。最后,使用Cosmicflows-3的局部星系样品,我们在本地宇宙中找到了深色映射。我们预计,当地的黑暗图像将阐明对暗物质本质以及当地群体的形成和演变的研究。高分辨率的模拟和对本地星系的精确距离测量将提高暗物实图的准确性。
The 80% of the matter in the Universe is in the form of dark matter that comprises the skeleton of the large-scale structure called the Cosmic Web. As the Cosmic Web dictates the motion of all matter in galaxies and inter-galactic media through gravity, knowing the distribution of dark matter is essential for studying the large-scale structure. However, the Cosmic Web's detailed structure is unknown because it is dominated by dark matter and warm-hot inter-galactic media, both of which are hard to trace. Here we show that we can reconstruct the Cosmic Web from the galaxy distribution using the convolutional-neural-network-based deep-learning algorithm. We find the mapping between the position and velocity of galaxies and the Cosmic Web using the results of the state-of-the-art cosmological galaxy simulations, Illustris-TNG. We confirm the mapping by applying it to the EAGLE simulation. Finally, using the local galaxy sample from Cosmicflows-3, we find the dark-matter map in the local Universe. We anticipate that the local dark-matter map will illuminate the studies of the nature of dark matter and the formation and evolution of the Local Group. High-resolution simulations and precise distance measurements to local galaxies will improve the accuracy of the dark-matter map.