论文标题

物理知识张量训练卷动员,用于循环电流预测的体积速度预测

Physics-informed Tensor-train ConvLSTM for Volumetric Velocity Forecasting of Loop Current

论文作者

Huang, Yu, Tang, Yufei, Zhuang, Hanqi, VanZwieten, James, Cherubin, Laurent

论文摘要

根据国家学院的说法,每周一次的速度,垂直结构和循环电流持续时间(LC)及其涡流对于理解海洋学和生态系统以及缓解墨西哥湾(GOM)中人为和自然灾害的结果至关重要。但是,此预测是一个具有挑战性的问题,因为LC行为由多个时间尺度的长期空间连接主导。在本文中,我们扩展了时空预测性学习,将其有效性超出视频预测,即4D模型,即用于3D地理空间数据预测的时间序列的新型物理学信息张量刺激刺激刺激刺激刺激刺激刺激曲线。具体而言,我们提出1)具有经验正交功能分析的新型4D高阶复发网络,以捕获每个层次结构的隐藏不相关模式,2)卷积张量张量张量 - 培训分解以捕获高级时空相关性,3)通过向Domain Specters nelect of note the Leartent oftent pertent corlent oftent pertent pertent pertent pertent corne the Letent pertent corne nelect in nelect in neledent inten plitent pertent pertent inter nelect in nelect in litent pertent pertent pertent。我们提出的方法的优点是明确的:受物理定律的约束,它同时学习了框架依赖性(短期和长期高级依赖关系)和每个时间范围内的层次间关系的良好表示。从GOM收集的地理空间数据的实验表明,Pitt-Convlstm在预测LC及其涡流的体积速度及其涡流中的最先进方法超过一周以上。

According to the National Academies, a weekly forecast of velocity, vertical structure, and duration of the Loop Current (LC) and its eddies is critical for understanding the oceanography and ecosystem, and for mitigating outcomes of anthropogenic and natural disasters in the Gulf of Mexico (GoM). However, this forecast is a challenging problem since the LC behaviour is dominated by long-range spatial connections across multiple timescales. In this paper, we extend spatiotemporal predictive learning, showing its effectiveness beyond video prediction, to a 4D model, i.e., a novel Physics-informed Tensor-train ConvLSTM (PITT-ConvLSTM) for temporal sequences of 3D geospatial data forecasting. Specifically, we propose 1) a novel 4D higher-order recurrent neural network with empirical orthogonal function analysis to capture the hidden uncorrelated patterns of each hierarchy, 2) a convolutional tensor-train decomposition to capture higher-order space-time correlations, and 3) to incorporate prior physic knowledge that is provided from domain experts by informing the learning in latent space. The advantage of our proposed method is clear: constrained by physical laws, it simultaneously learns good representations for frame dependencies (both short-term and long-term high-level dependency) and inter-hierarchical relations within each time frame. Experiments on geospatial data collected from the GoM demonstrate that PITT-ConvLSTM outperforms the state-of-the-art methods in forecasting the volumetric velocity of the LC and its eddies for a period of over one week.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源