论文标题

与低级可学习的本地过滤器的图形卷积

Graph Convolution with Low-rank Learnable Local Filters

论文作者

Cheng, Xiuyuan, Miao, Zichen, Qiu, Qiang

论文摘要

旋转,缩放和观点等几何变化对视觉理解构成了重大挑战。一种常见的解决方案是直接使用地标直接建模某些内在结构。但是,构建有效的深层模型,尤其是当潜在的非欧国网格不规则且粗糙时,它变得不足。使用图形卷积的最新模型提供了一个适当的框架来处理此类非欧国数据,但是其中许多(尤其是基于全球图拉普拉斯人的基于全球图形的人)缺乏捕获代表非欧盟网格上信号所需的局部特征的表现力。当前的论文引入了一种新型的图形卷积,并具有可学习的低级本地过滤器,事实证明,它比以前的光谱图卷积方法更具表现力。该模型还为光谱和空间图卷积提供了统一的框架。为了提高模型鲁棒性,引入了局部图拉普拉斯人的正则化。理论上证明了针对输入图数据扰动的表示稳定性,利用了图滤波器局部性和本地图正则化。对球形网格数据,现实世界面部表达识别/基于骨架的动作识别数据的实验以及带有模拟图噪声的数据显示了所提出模型的经验优势。

Geometric variations like rotation, scaling, and viewpoint changes pose a significant challenge to visual understanding. One common solution is to directly model certain intrinsic structures, e.g., using landmarks. However, it then becomes non-trivial to build effective deep models, especially when the underlying non-Euclidean grid is irregular and coarse. Recent deep models using graph convolutions provide an appropriate framework to handle such non-Euclidean data, but many of them, particularly those based on global graph Laplacians, lack expressiveness to capture local features required for representation of signals lying on the non-Euclidean grid. The current paper introduces a new type of graph convolution with learnable low-rank local filters, which is provably more expressive than previous spectral graph convolution methods. The model also provides a unified framework for both spectral and spatial graph convolutions. To improve model robustness, regularization by local graph Laplacians is introduced. The representation stability against input graph data perturbation is theoretically proved, making use of the graph filter locality and the local graph regularization. Experiments on spherical mesh data, real-world facial expression recognition/skeleton-based action recognition data, and data with simulated graph noise show the empirical advantage of the proposed model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源