论文标题
温度驱动的$β\rightarrowα$过渡的马氏体微结构演化的原子模拟
Atomistic simulation of martensite microstructural evolution during temperature driven $β\rightarrow α$ transition in pure titanium
论文作者
论文摘要
钛及其合金经历温度驱动的马氏体相变,导致中尺度上的复杂微观结构的发展。优化这些材料的机械性能需要了解处理参数与微观结构形成和演变所涉及的机制之间的相关性。在这项工作中,我们通过原子建模研究了温度诱导的从BCC到HCP的相位转变,并研究了局部应力条件对最终马氏体形态的影响。我们在不同的应力条件下模拟了过渡,并使用变形梯度图对局部晶格失真的变形梯度图进行了详细的分析。最终马氏体形态的分析表明,机械约束如何影响选定变体的数量以及最终微结构中缺陷的数量/类型。我们深入了解了实验观察到的不同接口的起源和结构,例如变化的边界和反相缺陷。特别是,我们展示了反相缺陷如何起源于过渡过程中到达的两倍退化洗牌位移,以及当局部应力阻止围绕生长的mart虫核的基质变化时,三重连接形成如何驱动纹理演变。
Titanium and its alloys undergo temperature-driven martensitic phase transformation leading to the development of complex microstructures at mesoscale. Optimizing the mechanical properties of these materials requires an understanding of the correlations between the processing parameters and the mechanisms involved in the microstructure formation and evolution. In this work, we study the temperature-induced phase transition from BCC to HCP in pure titanium by atomistic modeling and investigate the influence of local stress conditions on the final martensite morphology. We simulate the transition under different stress conditions and carry a detailed analysis of the microstructural evolution during transition using a deformation gradient map that characterizes the local lattice distortion. The analysis of final martensite morphologies shows how mechanical constraints influence the number of selected variants and the number/type of defects in the final microstructure. We give insight on the origin and structure of different interfaces experimentally observed, such as inter-variant boundaries and antiphase defects. In particular, we show how antiphase defects originate from the two-fold degeneracy shuffling displacement arriving during the transition and how the triple junction formation drives the texture evolution when local stresses prevent a free shape change of the matrix surrounding the growing martensite nuclei.