论文标题

硅光子平台上的通用3D成像传感器

A universal 3D imaging sensor on a silicon photonics platform

论文作者

Rogers, Christopher, Piggott, Alexander Y., Thomson, David J., Wiser, Robert F., Opris, Ion E., Fortune, Steven A., Compston, Andrew J., Gondarenko, Alexander, Meng, Fanfan, Chen, Xia, Reed, Graham T., Nicolaescu, Remus

论文摘要

准确的3D成像对于机器映射并与物理世界互动至关重要。尽管存在许多3D成像技术,但每项都以不同程度的成功来解决利基应用程序,但没有人能够实现数字图像传感器在2D成像世界中所取得的适用性和影响的广度。连贯的检测器像素作为光检测和射程(LIDAR)系统的大规模二维阵列可以用作通用3D成像平台。这样的系统将提供高度的精度和免疫力,可对阳光的干扰以及直接测量移动物体速度的能力。但是,由于在为每个像素提供电气和光子连接方面遇到困难,因此以前的系统仅限于少于20个像素。在这里,我们演示了第一个大规模连贯的检测器阵列,该检测器阵列由512($ 32 \ times 16 $)像素及其在3D成像系统中的操作。利用光子和电子电路整体整合的最新进展,将密集的光学异差检测器阵列与集成的电子读取体系结构相结合,从而使直接缩放缩放到任意较大的阵列。同时,两轴固态光束转向消除了视野和范围之间的任何权衡。我们的系统以量子噪声限制运行,仅使用$ 4〜 \ Mathrm {mw} $的光线,其准确度为$ 3.1〜 \ mathrm {mm} $,距离仅有$ 4〜 \ mathrm {mw} $,比在此类范围内的现有固态系统更准确。使用最先进的组件将像素尺寸的未来减小可能会产生超过20兆像素的分辨率,以使消费者相机传感器的大小相比。该结果为低成本,紧凑和高性能3D成像摄像机的发展和增殖铺平了道路。

Accurate 3D imaging is essential for machines to map and interact with the physical world. While numerous 3D imaging technologies exist, each addressing niche applications with varying degrees of success, none have achieved the breadth of applicability and impact that digital image sensors have achieved in the 2D imaging world. A large-scale two-dimensional array of coherent detector pixels operating as a light detection and ranging (LiDAR) system could serve as a universal 3D imaging platform. Such a system would offer high depth accuracy and immunity to interference from sunlight, as well as the ability to directly measure the velocity of moving objects. However, due to difficulties in providing electrical and photonic connections to every pixel, previous systems have been restricted to fewer than 20 pixels. Here, we demonstrate the first large-scale coherent detector array consisting of 512 ($32 \times 16$) pixels, and its operation in a 3D imaging system. Leveraging recent advances in the monolithic integration of photonic and electronic circuits, a dense array of optical heterodyne detectors is combined with an integrated electronic readout architecture, enabling straightforward scaling to arbitrarily large arrays. Meanwhile, two-axis solid-state beam steering eliminates any tradeoff between field of view and range. Operating at the quantum noise limit, our system achieves an accuracy of $3.1~\mathrm{mm}$ at a distance of 75 metres using only $4~\mathrm{mW}$ of light, an order of magnitude more accurate than existing solid-state systems at such ranges. Future reductions of pixel size using state-of-the-art components could yield resolutions in excess of 20 megapixels for arrays the size of a consumer camera sensor. This result paves the way for the development and proliferation of low cost, compact, and high performance 3D imaging cameras.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源