论文标题
流行病模型的几何形状和解决方案允许波动和量化
Geometry and solutions of an epidemic SIS model permitting fluctuations and quantization
论文作者
论文摘要
最近的一些作品表明,有一些在某个时候重现SIS流行模型的受感染个体的平均值和方差的微分方程模型。这种随机的SIS流行模型可以解释为哈密顿制度,因此我们想知道是否可以通过Lie-Hamilton Systems的理论来几何地处理,这是事实。原始结果是,我们能够以非线性叠加规则的形式获得随机/ SIS流动模型(具有波动)的一般解决方案,该模型包括特定的随机解决方案和某些与传播过程初始条件相关的常数。这些初始条件的选择对于显示流行期感染曲线的预期行为至关重要。我们将将这些常数限制在非义务方案中,并显示解决方案行为的图形。正如人们所期望的那样,受感染个体的增加遵循乙状结肠样曲线。 LIE-HAMILTON Systems接受了量子变形,随机SIS-流动模型也是如此。我们也提出了这种概括。如果一个人想研究在恒温源(例如中央加热建筑物的影响下)在SIS流行的演变,则可以利用来自所谓的量子变形的量子随机微分方程。
Some recent works reveal that there are models of differential equations for the mean and variance of infected individuals that reproduce the SIS epidemic model at some point. This stochastic SIS epidemic model can be interpreted as a Hamiltonian system, therefore we wondered if it could be geometrically handled through the theory of Lie--Hamilton systems, and this happened to be the case. The primordial result is that we are able to obtain a general solution for the stochastic/ SIS-epidemic model (with fluctuations) in form of a nonlinear superposition rule that includes particular stochastic solutions and certain constants to be related to initial conditions of the contagion process. The choice of these initial conditions will be crucial to display the expected behavior of the curve of infections during the epidemic. We shall limit these constants to nonsingular regimes and display graphics of the behavior of the solutions. As one could expect, the increase of infected individuals follows a sigmoid-like curve. Lie--Hamiltonian systems admit a quantum deformation, so does the stochastic SIS-epidemic model. We present this generalization as well. If one wants to study the evolution of an SIS epidemic under the influence of a constant heat source (like centrally heated buildings), one can make use of quantum stochastic differential equations coming from the so-called quantum deformation.