论文标题
等级品种和$π$ - 基础超级组方案的点
Rank varieties and $π$-points for elementary supergroup schemes
论文作者
论文摘要
我们在一个积极特征$ p \ ge 3 $的领域为基本超级组方案开发了支持理论,从定义了$π$ - 点概括性的循环转移的卡尔森的亚组,用于基本的亚洲小组和$π$ - 弗里德兰德和pevtsova的Points for Friedlander and pevtsova for Filite Group sepemes。这些是根据分级代数$ k [t,τ]/(t^p-τ^2)$的图来定义的,其中$ t $具有均匀的度,$τ$具有奇数。通过对基本超级组方案的稳定模块类别的奇偶校验变化不变的本地分类进行分类来证明该理论的强度。
We develop a support theory for elementary supergroup schemes, over a field of positive characteristic $p\ge 3$, starting with a definition of a $π$-point generalising cyclic shifted subgroups of Carlson for elementary abelian groups and $π$-points of Friedlander and Pevtsova for finite group schemes. These are defined in terms of maps from the graded algebra $k[t,τ]/(t^p-τ^2)$, where $t$ has even degree and $τ$ has odd degree. The strength of the theory is demonstrated by classifying the parity change invariant localising subcategories of the stable module category of an elementary supergroup scheme.