论文标题

奇异的最佳随机领导者选举

Singularly Optimal Randomized Leader Election

论文作者

Kutten, Shay, Moses Jr., William K., Pandurangan, Gopal, Peleg, David

论文摘要

本文涉及设计非常最佳的分布式算法,即,对于网络中的基本领导者选举问题,同时是时间和消息最佳的算法。我们的主要结果是用于异步完整网络的随机分布式领导者选举算法,该算法本质上是(直到一个多毛体因子)奇异的最佳选择。我们的算法使用$ O(n)$消息具有很高的可能性,并以$ O(\ log^2 n)$时间(具有高概率)运行来选举独特的领导者。 The $O(n)$ message complexity should be contrasted with the $Ω(n \log n)$ lower bounds for the deterministic message complexity of leader election algorithms (regardless of time), proven by Korach, Moran, and Zaks (TCS, 1989) for asynchronous algorithms and by Afek and Gafni (SIAM J. Comput., 1991) for synchronous networks.因此,我们的结果还将随机和确定性领导者选举的信息复杂性分开。更重要的是,我们的(随机)时间复杂性为$ O(\ log^2 n)$,用于获得最佳的$ o(n)$消息复杂性明显小于afek和gafni和singh获得的长期存在的$ \tildeθ(n)$(siam J. Comput。 在同步完整的网络中,AFEK和GAFNI与$ O(\ log n)$ time和$ O(n \ log n)$消息具有本质上具有最佳的确定性算法。 Ramanathan等。 (Distract。Comput。2007)使用随机化来改善消息复杂性,并显示了带有$ O(n)$消息的随机算法和$ O(\ log n)$ time(具有失败概率$ o(1 / \ log^{ω(ω(1)} n)n)$)。我们的第二个结果是针对此设置的$ O(1)$时间和$ o(n)$消息的紧密最佳随机算法,其时间限制的确定性和消息绑定具有很高的可能性。

This paper concerns designing distributed algorithms that are singularly optimal, i.e., algorithms that are simultaneously time and message optimal, for the fundamental leader election problem in networks. Our main result is a randomized distributed leader election algorithm for asynchronous complete networks that is essentially (up to a polylogarithmic factor) singularly optimal. Our algorithm uses $O(n)$ messages with high probability and runs in $O(\log^2 n)$ time (with high probability) to elect a unique leader. The $O(n)$ message complexity should be contrasted with the $Ω(n \log n)$ lower bounds for the deterministic message complexity of leader election algorithms (regardless of time), proven by Korach, Moran, and Zaks (TCS, 1989) for asynchronous algorithms and by Afek and Gafni (SIAM J. Comput., 1991) for synchronous networks. Hence, our result also separates the message complexities of randomized and deterministic leader election. More importantly, our (randomized) time complexity of $O(\log^2 n)$ for obtaining the optimal $O(n)$ message complexity is significantly smaller than the long-standing $\tildeΘ(n)$ time complexity obtained by Afek and Gafni and by Singh (SIAM J. Comput., 1997) for message optimal (deterministic) election in asynchronous networks. In synchronous complete networks, Afek and Gafni showed an essentially singularly optimal deterministic algorithm with $O(\log n)$ time and $O(n \log n)$ messages. Ramanathan et al. (Distrib. Comput. 2007) used randomization to improve the message complexity, and showed a randomized algorithm with $O(n)$ messages and $O(\log n)$ time (with failure probability $O(1 / \log^{Ω(1)}n)$). Our second result is a tightly singularly optimal randomized algorithm, with $O(1)$ time and $O(n)$ messages, for this setting, whose time bound holds with certainty and message bound holds with high probability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源