论文标题
学习的凸正规化器的反问题
Learned convex regularizers for inverse problems
论文作者
论文摘要
我们将反向问题的变分重建框架视为跨问题,并建议学习数据自适应输入 - 传感器神经网络(ICNN)作为正则化功能。基于ICNN的凸正则器经过对抗性训练,以辨别未注重重建的地面真实图像。正常化程序的凸度是可取的,因为(i)可以为相应的变异重建问题建立分析收敛保证,并(ii)设计有效且可证明的算法以进行重建。特别是,我们表明,如果惩罚参数相对于噪声规范,惩罚参数逐渐衰减,则变异问题的最佳解决方案会收敛到地面真相。此外,我们证明了基于次级级别的算法的存在,该算法会随着迭代的形式单调减少参数空间的误差。为了证明我们解决反问题的方法的表现,我们考虑了在计算机断层扫描(CT)中脱毛的自然图像和重建图像的任务,并表明所提出的凸正规器至少具有竞争力,有时甚至比最先进的数据驱动技术优于逆问题。
We consider the variational reconstruction framework for inverse problems and propose to learn a data-adaptive input-convex neural network (ICNN) as the regularization functional. The ICNN-based convex regularizer is trained adversarially to discern ground-truth images from unregularized reconstructions. Convexity of the regularizer is desirable since (i) one can establish analytical convergence guarantees for the corresponding variational reconstruction problem and (ii) devise efficient and provable algorithms for reconstruction. In particular, we show that the optimal solution to the variational problem converges to the ground-truth if the penalty parameter decays sub-linearly with respect to the norm of the noise. Further, we prove the existence of a sub-gradient-based algorithm that leads to a monotonically decreasing error in the parameter space with iterations. To demonstrate the performance of our approach for solving inverse problems, we consider the tasks of deblurring natural images and reconstructing images in computed tomography (CT), and show that the proposed convex regularizer is at least competitive with and sometimes superior to state-of-the-art data-driven techniques for inverse problems.