论文标题
基于零件的信念传播中基于零件的清晰对象定位
Parts-Based Articulated Object Localization in Clutter Using Belief Propagation
论文作者
论文摘要
在人类环境中工作的机器人必须能够感知并采取具有发音(例如一堆工具)的具有挑战性的物体。铰接式对象增加了姿势估计问题的维度,而在混乱中的部分观察结果会带来额外的挑战。为了解决这个问题,我们提出了一种基于生成的歧视性零件的识别和定位方法,用于杂物中的清晰对象。我们将铰接式物体的问题提出为马尔可夫随机场(MRF)的问题。此MRF中的隐藏节点表达对象部分的姿势,边缘表示部分之间的表达约束。使用有效的信念传播方法在MRF中进行定位。该方法通过神经网络产生的观察结果以及对象部分之间的关节约束来告知该方法。我们的生成歧视方法允许提出的方法通过使用可见零件的假设来推断被咬合部分的姿势在混乱的环境中发挥作用。我们在桌面环境中证明了方法在未整理和混乱的配置中识别和本地化手动工具的功效。
Robots working in human environments must be able to perceive and act on challenging objects with articulations, such as a pile of tools. Articulated objects increase the dimensionality of the pose estimation problem, and partial observations under clutter create additional challenges. To address this problem, we present a generative-discriminative parts-based recognition and localization method for articulated objects in clutter. We formulate the problem of articulated object pose estimation as a Markov Random Field (MRF). Hidden nodes in this MRF express the pose of the object parts, and edges express the articulation constraints between parts. Localization is performed within the MRF using an efficient belief propagation method. The method is informed by both part segmentation heatmaps over the observation, generated by a neural network, and the articulation constraints between object parts. Our generative-discriminative approach allows the proposed method to function in cluttered environments by inferring the pose of occluded parts using hypotheses from the visible parts. We demonstrate the efficacy of our methods in a tabletop environment for recognizing and localizing hand tools in uncluttered and cluttered configurations.