论文标题

SU(1,1)干涉仪的量子增强随机相估计

Quantum-enhanced stochastic phase estimation with SU(1,1) interferometer

论文作者

Zheng, Kaimin, Mi, Minghao, Wang, Ben, Hu, Liyun, Liu, Shengshuai, Lou, Yanbo, Jing, Jietai, Zhang, Lijian

论文摘要

量子随机相估计在各种物理参数的精确测量中都有许多应用。与恒定相的估计相似,随机相估计存在标准量子限制,可以使用Mach-Zehnder干涉仪和相干输入状态获得。最近,已经表明,随机标准的量子极限可以被非古典资源(例如挤压光)超越。但是,在随机相估计中实现量子增强的实用方法仍然在很大程度上尚未探索。在这里,我们提出了一种使用SU(1,1)干涉仪和相干输入状态来估计随机光学相的方法。例如,我们研究了Ornstein-uhlenback随机阶段。我们分析了该方法的三个关键估计问题的性能:预测,跟踪和平滑。结果表明,与在干涉仪内部相同的光子数量下,均方根误差显着降低。特别是,我们表明使用SU(1,1)干涉仪的方法可以实现基本的量子缩放,随机的海森贝格缩放,并超过规范测量的精度。

The quantum stochastic phase estimation has many applications in the precise measurement of various physical parameters. Similar to the estimation of a constant phase, there is a standard quantum limit for stochastic phase estimation, which can be obtained with the Mach-Zehnder interferometer and coherent input state. Recently, it has been shown that the stochastic standard quantum limit can be surpassed with non-classical resources such as the squeezed light. However, practical methods to achieve the quantum enhancement in the stochastic phase estimation remains largely unexplored. Here we propose a method utilizing the SU(1,1) interferometer and coherent input states to estimate a stochastic optical phase. As an example, we investigate the Ornstein-Uhlenback stochastic phase. We analyze the performance of this method for three key estimation problems: prediction, tracking and smoothing. The results show significant reduction of the mean square error compared with the Mach-Zehnder interferometer under the same photon number flux inside the interferometers. In particular, we show that the method with the SU(1,1) interferometer can achieve the fundamental quantum scaling, the stochastic Heisenberg scaling, and surpass the precision of the canonical measurement.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源