论文标题

$ l^p $ - 单元磁盘上凯奇 - 转换的理论

$L^p$-theory for Cauchy-transform on the unit disk

论文作者

Kalaj, David, Melentijević, Petar, Zhu, Jian-Feng

论文摘要

令$ \ mathbb {d} $为单位磁盘,$φ\ in l^p(\ mathbb {d},\ mathrm {d} a)$,其中$ 1 \ leq p \ leq \ leq \ infty $。对于$ z \ in \ mathbb {d} $,$ \ mathbb {d} $上的cauchy-transform,用$ \ mathcal {p} $表示,定义如下: $$ \ MATHCAL {p} [φ](z)= - \ int _ {\ Mathbb {d}}} \ left(\ frac {φ(w)} {w-z} +\ frac {z \ +edline {φ(w)}} {1- \ bar {w} z} \ right)\ mathrm {d} a(w)a(w)。$$ $ \ mathbb {d} $上的beurling变换,用$ \ mathcal {h} $表示,现在被定义为$ z $ - $ \ mathcal {p} $的$ z $。 In this paper, by using Hardy's type inequalities and Bessel functions, we show that $\|\mathcal{P}\|_{L^2\to L^2}=α\approx1.086$, where $α$ is a solution to the equation: $2J_0(2/α)-αJ_1(2/α)=0$, and $J_0$, $ J_1 $是Bessel功能。此外,对于$ p> 2 $,通过使用Taylor扩展,Parseval的公式和超几何功能,我们还证明了$ \ | \ | \ Mathcal {p} \ | _ _ {l^p \ to l^{\ infty}} = 2(γ(2- q)/γ^2(2- \ frac {q} {2})))^{1/q} $,其中$ q = p/q/(p/p/q/q} $是$ p $的共轭指数,$γ$是gamma函数。最后,应用本文开发的相同技术时,我们表明beurling变换$ \ mathcal {h} $充当$ l^2(\ Mathbb {d},\ mathrm {d} a)$的等轴测图。

Let $\mathbb{D}$ be the unit disk and $φ\in L^p(\mathbb{D}, \mathrm{d}A)$, where $1\leq p\leq\infty$. For $z\in\mathbb{D}$, the Cauchy-transform on $\mathbb{D}$, denote by $\mathcal{P}$, is defined as follows: $$\mathcal{P}[φ](z)=-\int_{\mathbb{D}}\left(\frac{φ(w)}{w-z}+\frac{z\overline{φ(w)}}{1-\bar{w}z}\right)\mathrm{d}A(w).$$ The Beurling transform on $\mathbb{D}$, denote by $\mathcal{H}$, is now defined as the $z$-derivative of $\mathcal{P}$. In this paper, by using Hardy's type inequalities and Bessel functions, we show that $\|\mathcal{P}\|_{L^2\to L^2}=α\approx1.086$, where $α$ is a solution to the equation: $2J_0(2/α)-αJ_1(2/α)=0$, and $J_0$, $J_1$ are Bessel functions. Moreover, for $p>2$, by using Taylor expansion, Parseval's formula and hypergeometric functions, we also prove that $\|\mathcal{P}\|_{L^p\to L^{\infty}}=2(Γ(2-q)/Γ^2(2-\frac{q}{2}))^{1/q}$, where $q=p/(p-1)$ is the conjugate exponent of $p$, and $Γ$ is the Gamma function. Finally, applying the same techniques developed in this paper, we show that the Beurling transform $\mathcal{H}$ acts as an isometry of $L^2(\mathbb{D}, \mathrm{d}A)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源