论文标题

关联部分领域适应

Associative Partial Domain Adaptation

论文作者

Kim, Youngeun, Hong, Sungeun, Yang, Seunghan, Kang, Sungil, Jeon, Yunho, Kim, Jiwon

论文摘要

部分适应(PDA)解决了一个实际情况,在该方案中,目标域仅包含源域中的类的子集。尽管PDA应考虑类级别和样本级别以减轻负面转移,但当前方法主要仅依赖于其中一种。在本文中,我们提出了一种新颖的方法,以完全利用PDA中可能出现的多层次关联。我们的关联部分域适应性(APDA)利用域内关联在每个源私人类中积极选择样品级别加权无法处理的非平凡的异常样品。此外,我们的方法考虑了域间的关联,以通过在附近的目标样本和具有高标签 - 共鸣的源样本之间映射绘制正向转移。为此,我们在由源地面真相标签和目标概率标签组成的建议的标签空间中利用特征传播。我们进一步提出了基于每个源类别的标签共同点的几何指导损失,以鼓励积极转移。我们的APDA始终在公共数据集中实现最先进的性能。

Partial Adaptation (PDA) addresses a practical scenario in which the target domain contains only a subset of classes in the source domain. While PDA should take into account both class-level and sample-level to mitigate negative transfer, current approaches mostly rely on only one of them. In this paper, we propose a novel approach to fully exploit multi-level associations that can arise in PDA. Our Associative Partial Domain Adaptation (APDA) utilizes intra-domain association to actively select out non-trivial anomaly samples in each source-private class that sample-level weighting cannot handle. Additionally, our method considers inter-domain association to encourage positive transfer by mapping between nearby target samples and source samples with high label-commonness. For this, we exploit feature propagation in a proposed label space consisting of source ground-truth labels and target probabilistic labels. We further propose a geometric guidance loss based on the label commonness of each source class to encourage positive transfer. Our APDA consistently achieves state-of-the-art performance across public datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源