论文标题

$ 2^{o(k)} n $算法,用于$ k $ cycle in Binallaped Graph系列

A $2^{O(k)}n$ algorithm for $k$-cycle in minor-closed graph families

论文作者

Yuster, Raphael

论文摘要

令$ {\ Mathcal C} $为适当的次要图形系列。我们提出了一种随机算法,该算法在{\ Mathcal c} $中给出了图形$ g \带有$ n $ vertices,在$ 2^{o(k)} n $ time中找到了一个简单的$ k $中的简单周期$ k $(如果存在)。该算法适用于有向和无向图。在此问题的先前线性时间算法中,对$ k $的运行时依赖性是超级指数。该算法可以被取代,得出$ 2^{o(k)} n \ log n $ time算法。

Let ${\mathcal C}$ be a proper minor-closed family of graphs. We present a randomized algorithm that given a graph $G \in {\mathcal C}$ with $n$ vertices, finds a simple cycle of size $k$ in $G$ (if exists) in $2^{O(k)}n$ time. The algorithm applies to both directed and undirected graphs. In previous linear time algorithms for this problem, the runtime dependence on $k$ is super-exponential. The algorithm can be derandomized yielding a $2^{O(k)}n\log n$ time algorithm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源