论文标题

实时唤醒涡流传输和衰减预测的轻度混合分析和建模方法

A nudged hybrid analysis and modeling approach for realtime wake-vortex transport and decay prediction

论文作者

Ahmed, Shady, Pawar, Suraj, San, Omer, Rasheed, Adil, Tabib, Mandar

论文摘要

我们提出了一个长期的短期记忆(LSTM)裸框架,以增强利用嘈杂的测量空中交通改善的液体流量减少订单模型(ROM)。为了使数字双胞胎在航空中的新兴应用中,该建议的方法允许为唤醒涡流传输和衰减系统构建实时预测工具。我们基于这样一个事实,即在现实应用中,在初始和边界条件,模型参数以及测量值中存在不确定性。此外,基于Galerkin投影(GROM)的常规非线性ROM遭受了不完美和解决方案不稳定性的影响,尤其是对于kolmogorov宽度中缓慢衰变的对流主导的流量。在提出的LSTM nuding(LSTM-N)方法中,我们从不完美的GROM和不确定状态估计的组合进行融合,并与稀疏的Eulerian传感器测量值融合在一起,以在动态数据同化框架中提供更可靠的预测。我们通过解决二维涡度传输方程来说明我们的概念。我们研究了测量噪声和状态估计不确定性对LSTM-N行为性能的影响。我们还证明,它可以充分处理不同水平的时间和空间测量稀疏性,并在开发下一代数字双胞胎技术方面具有巨大的潜力。

We put forth a long short-term memory (LSTM) nudging framework for the enhancement of reduced order models (ROMs) of fluid flows utilizing noisy measurements for air traffic improvements. Toward emerging applications of digital twins in aviation, the proposed approach allows for constructing a realtime predictive tool for wake-vortex transport and decay systems. We build on the fact that in realistic application, there are uncertainties in initial and boundary conditions, model parameters, as well as measurements. Moreover, conventional nonlinear ROMs based on Galerkin projection (GROMs) suffer from imperfection and solution instabilities, especially for advection-dominated flows with slow decay in the Kolmogorov width. In the presented LSTM nudging (LSTM-N) approach, we fuse forecasts from a combination of imperfect GROM and uncertain state estimates, with sparse Eulerian sensor measurements to provide more reliable predictions in a dynamical data assimilation framework. We illustrate our concept by solving a two-dimensional vorticity transport equation. We investigate the effects of measurements noise and state estimate uncertainty on the performance of the LSTM-N behavior. We also demonstrate that it can sufficiently handle different levels of temporal and spatial measurement sparsity, and offer a huge potential in developing next-generation digital twin technologies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源