论文标题
蛋白质结构化储层计算基于峰值的模式识别
Protein Structured Reservoir computing for Spike-based Pattern Recognition
论文作者
论文摘要
如今,我们目睹了半导体行业的微型化趋势,并得到了纳米级表征和制造方面的开创性发现和设计的支持。为了促进趋势并产生越来越小,更快,更便宜的计算设备,纳米电子设备的大小现在达到了原子或分子的规模 - 无疑是对新型设备的技术目标。遵循趋势,我们探讨了在单个蛋白质分子上实施储层计算的非常规途径,并以小世界网络属性引入神经形态连接。我们选择了Izhikevich尖峰神经元作为基本处理器,与Verotoxin蛋白的原子相对应,其分子作为连接处理器的通信网络的“硬件”结构。我们以一种有监督的方式在单个读数层上应用各种培训方法,以调查分子结构化储层计算(RC)系统是否能够处理机器学习基准。我们从基于峰值依赖性塑性的远程监督方法开始,并以线性回归和缩放的共轭梯度背向传播训练方法继续进行。将RC网络评估为MNIST数据集的手写数字图像上的概念验证,并与其他类似方法相比,证明了可接受的分类精度。
Nowadays we witness a miniaturisation trend in the semiconductor industry backed up by groundbreaking discoveries and designs in nanoscale characterisation and fabrication. To facilitate the trend and produce ever smaller, faster and cheaper computing devices, the size of nanoelectronic devices is now reaching the scale of atoms or molecules - a technical goal undoubtedly demanding for novel devices. Following the trend, we explore an unconventional route of implementing a reservoir computing on a single protein molecule and introduce neuromorphic connectivity with a small-world networking property. We have chosen Izhikevich spiking neurons as elementary processors, corresponding to the atoms of verotoxin protein, and its molecule as a 'hardware' architecture of the communication networks connecting the processors. We apply on a single readout layer various training methods in a supervised fashion to investigate whether the molecular structured Reservoir Computing (RC) system is capable to deal with machine learning benchmarks. We start with the Remote Supervised Method, based on Spike-Timing-Dependent-Plasticity, and carry on with linear regression and scaled conjugate gradient back-propagation training methods. The RC network is evaluated as a proof-of-concept on the handwritten digit images from the MNIST dataset and demonstrates acceptable classification accuracy in comparison with other similar approaches.