论文标题

网络推断从扩散模型的混合物用于伪造新闻

Network Inference from a Mixture of Diffusion Models for Fake News Mitigation

论文作者

Sharma, Karishma, He, Xinran, Seo, Sungyong, Liu, Yan

论文摘要

旨在欺骗人们,影响公众舆论和操纵社会成果的假新闻的传播已成为社交媒体上的一个紧迫问题。此外,社交媒体上的信息共享促进了病毒信息级联的扩散。在这项工作中,我们专注于理解和利用虚假和合法内容的扩散动态,以促进网络干预以减轻虚假新闻。我们分析了包括伪造和真实新闻级联的现实世界Twort数据集,以了解有关假和真实内容的扩散动态和用户行为的差异。基于分析,我们将扩散作为独立级联模型(MIC)与参数的混合物$θ_t,θ_f$在社交网络图上;并从观察到的未标记的级联反应中得出无监督的推理技术,以进行扩散混合模型的参数估计。使用推断的扩散动力学确定了对真实和伪造物的传播影响的用户。确定有影响力的用户的特征揭示了为假新闻确定的有影响力的用户与假新闻级联中的相对外观之间的正相关。确定的有影响力的用户往往与更多的病毒信息级联有关的主题相比,而不是病毒式信息。与真实新闻有影响力的用户相比,确定的虚假新闻有影响力的用户的直接关注者计数相对较少。对节点和边缘的干预分析表明,推断的扩散动力学在支持网络干预方面的缓解措施方面的能力。

The dissemination of fake news intended to deceive people, influence public opinion and manipulate social outcomes, has become a pressing problem on social media. Moreover, information sharing on social media facilitates diffusion of viral information cascades. In this work, we focus on understanding and leveraging diffusion dynamics of false and legitimate contents in order to facilitate network interventions for fake news mitigation. We analyze real-world Twitter datasets comprising fake and true news cascades, to understand differences in diffusion dynamics and user behaviours with regards to fake and true contents. Based on the analysis, we model the diffusion as a mixture of Independent Cascade models (MIC) with parameters $θ_T, θ_F$ over the social network graph; and derive unsupervised inference techniques for parameter estimation of the diffusion mixture model from observed, unlabeled cascades. Users influential in the propagation of true and fake contents are identified using the inferred diffusion dynamics. Characteristics of the identified influential users reveal positive correlation between influential users identified for fake news and their relative appearance in fake news cascades. Identified influential users tend to be related to topics of more viral information cascades than less viral ones; and identified fake news influential users have relatively fewer counts of direct followers, compared to the true news influential users. Intervention analysis on nodes and edges demonstrates capacity of the inferred diffusion dynamics in supporting network interventions for mitigation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源