论文标题

用p-NET编码结构文本关系,用于视网膜图像中的异常检测

Encoding Structure-Texture Relation with P-Net for Anomaly Detection in Retinal Images

论文作者

Zhou, Kang, Xiao, Yuting, Yang, Jianlong, Cheng, Jun, Liu, Wen, Luo, Weixin, Gu, Zaiwang, Liu, Jiang, Gao, Shenghua

论文摘要

视网膜图像中的异常检测是指通过在训练阶段利用正常图像来鉴定由各种视网膜疾病/病变引起的异常。来自健康受试者的正常图像通常具有规则的结构(例如,眼底图像中的结构化血管或光学相干断层扫描图像中的结构解剖结构)。相反,疾病和病变经常破坏这些结构。在此激励的情况下,我们建议利用图像纹理和结构之间的关系来设计深神网络以进行异常检测。具体而言,我们首先提取视网膜图像的结构,然后将结构特征和从原始健康图像提取的最后一层特征结合在一起,以重建原始的输入健康图像。图像功能提供了纹理信息,并确保从结构中恢复的图像的独特性。最后,我们进一步利用重建的图像来提取结构并测量从原始图像和重建图像中提取的结构之间的差异。一方面,最小化重建差的表现就像正规器,以确保对图像进行校正重建。另一方面,这种结构差异也可以用作正态性测量的度量。整个网络被称为p-net,因为它具有``p''形状。在RESC数据集和ISEE数据集上进行的广泛实验验证了我们在视网膜图像中检测方法的有效性。此外,我们的方法还很好地概括了在现实世界图像中的视网膜图像和异常检测中的新型类发现。

Anomaly detection in retinal image refers to the identification of abnormality caused by various retinal diseases/lesions, by only leveraging normal images in training phase. Normal images from healthy subjects often have regular structures (e.g., the structured blood vessels in the fundus image, or structured anatomy in optical coherence tomography image). On the contrary, the diseases and lesions often destroy these structures. Motivated by this, we propose to leverage the relation between the image texture and structure to design a deep neural network for anomaly detection. Specifically, we first extract the structure of the retinal images, then we combine both the structure features and the last layer features extracted from original health image to reconstruct the original input healthy image. The image feature provides the texture information and guarantees the uniqueness of the image recovered from the structure. In the end, we further utilize the reconstructed image to extract the structure and measure the difference between structure extracted from original and the reconstructed image. On the one hand, minimizing the reconstruction difference behaves like a regularizer to guarantee that the image is corrected reconstructed. On the other hand, such structure difference can also be used as a metric for normality measurement. The whole network is termed as P-Net because it has a ``P'' shape. Extensive experiments on RESC dataset and iSee dataset validate the effectiveness of our approach for anomaly detection in retinal images. Further, our method also generalizes well to novel class discovery in retinal images and anomaly detection in real-world images.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源