论文标题
多变量时空随机场的协方差特性的测试和可视化
Test and Visualization of Covariance Properties for Multivariate Spatio-Temporal Random Fields
论文作者
论文摘要
从监视网络和卫星收集的多元时空数据的普遍性,或从数值模型中产生的,引起了人们对多元时空统计模型的广泛关注,在该模型中,协方差函数在建模,推理和预测中起关键作用。对于多元时空数据,了解变量内部和跨变量内的时空变异性对于采用现实的协方差模型至关重要。同时,通用协方差的复杂性通常使模型拟合非常具有挑战性,简化的协方差结构(包括对称性和可分离性)可以降低模型的复杂性并促进推理过程。但是,在实际应用中需要仔细检查这些属性。在此处介绍的工作中,我们正式为多元时空随机字段定义了这些属性,并使用功能数据分析技术可视化它们,因此提供了直观的解释。然后,我们提出了一个严格的基于等级的测试程序,以结论简化的协方差属性是否适合基础多元时空数据。通过合成数据来说明我们方法的良好性能,我们知道这是真正的结构。我们还调查了沙特阿拉伯的沿海和内陆地区的双变量风速的协方差,这是可再生能源的关键变量。补充材料可在线获得,包括用于我们开发的方法的R代码。
The prevalence of multivariate space-time data collected from monitoring networks and satellites, or generated from numerical models, has brought much attention to multivariate spatio-temporal statistical models, where the covariance function plays a key role in modeling, inference, and prediction. For multivariate space-time data, understanding the spatio-temporal variability, within and across variables, is essential in employing a realistic covariance model. Meanwhile, the complexity of generic covariances often makes model fitting very challenging, and simplified covariance structures, including symmetry and separability, can reduce the model complexity and facilitate the inference procedure. However, a careful examination of these properties is needed in real applications. In the work presented here, we formally define these properties for multivariate spatio-temporal random fields and use functional data analysis techniques to visualize them, hence providing intuitive interpretations. We then propose a rigorous rank-based testing procedure to conclude whether the simplified properties of covariance are suitable for the underlying multivariate space-time data. The good performance of our method is illustrated through synthetic data, for which we know the true structure. We also investigate the covariance of bivariate wind speed, a key variable in renewable energy, over a coastal and an inland area in Saudi Arabia. The Supplementary Material is available online, including the R code for our developed methods.